图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 B(G).其中 T(G)是遍历图时所经过的边的集合,B(G) 是遍历图时未经过的边的集合.显然,G1(V, T) 是图 G 的极小连通子图,即子图G1 是连通图 G 的生成树. 深度优先生成森林   右边的是深度优先生成森林: 连通图的生成树不一定是唯一的,不同的遍历图的方法得到不同的生成树;从不…
链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M<=200000) 接下来M行每行包含三个整数Xi.Yi.Zi,表示有一条长度为Zi的无向边连接结点Xi.Yi 输出格式: 输出包含一个数,即最小生成树的各边的长度之和:如果该图不连通则输出orz 输入输出样例 输入样例#1: 4 5 1 2 2 1 3 2 1 4 3 2 3 4 3 4 3 输出样例#1…
#include <iostream> #include <string> using namespace std; typedef struct MGraph{ string vexs[10];//顶点信息 int arcs[10][10];//邻接矩阵 int vexnum, arcnum;//顶点数和边数 }MGraph; int LocateVex(MGraph G, string u)//返回顶点u在图中的位置 { for(int i=0; i<G.vexnum;…
我们在前面讲过的<克里姆算法>是以某个顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树的.同样的思路,我们也可以直接就以边为目标去构建,因为权值为边上,直接找最小权值的边来构建生成树也是很自然的想法,只不过构建时要考虑是否会形成环而已,此时我们就用到了图的存储结构中的边集数组结构,如图7-6-7 假设现在我们已经通过邻接矩阵得到了边集数组edges并按权值从小到大排列如上图. 下面我们对着程序和每一步循环的图示来看: 算法代码:(改编自<大话数据结构>)  C++ Code …
/* *Kruskal算法求MST */ #include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <string> #include <algorithm> #include <queue> #include <set> #include <stack> using namespace…
# include <stdio.h> # define MAX_VERTEXES //最大顶点数 # define MAXEDGE //边集数组最大值 # define INFINITY //代表不可能的数(无穷大) typedef struct {//图 结构体定义 int arc[MAX_VERTEXES][MAX_VERTEXES];//二位数组 矩阵 int numVertexes, numEdges;//当前图中的顶点数和边数 }MGraph; typedef struct {//…
最小生成树MST,英文名如何拼写已忘,应该是min spaning tree吧.假设一个无向连通图有n个节点,那么它的生成树就是包括这n个节点的无环连通图,无环即形成树.最小生成树是对边上权重的考虑,最小生成树即树的所有边上权重值之和最小,最小指权重最小,即在含有 n 个顶点的连通网中选择 n-1 条边,构成一棵极小连通子图,并使该连通子图中 n-1 条边上权值之和达到最小.专业一点的解释:在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(…
克鲁斯卡尔算法打印最小生成树: 构造出所有边的集合 edges,从小到大,依次选出筛选边打印,遇到闭环(形成回路)时跳过. JS代码: //定义邻接矩阵 let Arr2 = [ [0, 10, 65535, 65535, 65535, 11, 65535, 65535, 65535], [10, 0, 18, 65535, 65535, 65535, 16, 65535, 12], [65535, 18, 0, 22, 65535, 65535, 65535, 65535, 8], [6553…
[0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解 Kruskal(克鲁斯卡尔)算法 的idea 并用 源代码加以实现: 0.2)最小生成树的基础知识,参见 http://blog.csdn.net/pacosonswjtu/article/details/49947085 [1] Kruskal 算法(使用到了不相交集ADT的union/find 操作) 1.1)第二种贪婪策略是: 连续地按照最小的权选择边, 并且当所选的边不产生圈时就可以吧它作为取定…
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小.该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现:并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现:1959年,艾兹格·迪科斯彻再次发现了该算法.因此,在某些场…