3. 文本相似度计算-DSSM算法】的更多相关文章

1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 最近在学习文本相似度的计算,前面两篇文章分别介绍了文本的向量化和文本的距离度量,这两篇文章的思路主要在机器学习的框架下面,本文准备换一个思路,从深度学习的角度来处理文本相似度的问题. 本文介绍DSSM(Deep Structured Semantic Models)深度学习架构. 2. DSSM原理 DSSM的原理很简单,通过搜索引擎里Q…
1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 之前介绍了DSSM算法,它主要是用了DNN的结构来对数据进行降维度,本文用CNN的结构对数据进行降维. 2. CNN-DSSM CNN-DSSM在DSSM的基础上改进了数据的预处理和深度 2.1 CNN-DSSM架构 CNN-DSSM的架构图如下: 输入:\(Query\)是代表用户输入,\(document\)是数据库中的文档. wor…
http://infolab.stanford.edu/~ullman/mmds/ch3.pdf 汇总于此 还有这本书 http://www-nlp.stanford.edu/IR-book/ 里面有词向量空间 SVM 等介绍 http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed-english/Ch27b_ir2-vectorspace-95.pdf 专门介绍向量空间 https://courses.…
Python使用gensim进行文本相似度计算 转于:http://rzcoding.blog.163.com/blog/static/2222810172013101895642665/ 在文本处理中,比如商品评论挖掘,有时需要了解每个评论分别和商品的描述之间的相似度,以此衡量评论的客观性. 评论和商品描述的相似度越高,说明评论的用语比较官方,不带太多感情色彩,比较注重描述商品的属性和特性,角度更客观. 那么Python 里面有计算文本相似度的程序包吗,恭喜你,不仅有,而且很好很强大. 这是从…
参考:python文本相似度计算 原始语料格式:一个文件,一篇文章. #!/usr/bin/env python # -*- coding: UTF-8 -*- import jieba from gensim import corpora,models,similarities import codecs def cut_words(file): with open(file, 'r',encoding="utf-8") as f: text = f.read() words = j…
本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python下载地址:http://radimrehurek.com/gensim/models/word2vec.html 1.简介 參考:<Word2vec的核心架构及其应用 · 熊富林.邓怡豪,唐晓晟 · 北邮2015年>           <Word2vec的工作原理及应用探究 · 周练 ·…
参看了 https://github.com/awnuxkjy/recommend-system 对方用了 余弦 函数实现相似度计算,我则用的是 hanlp+hash 算法(Hash算法总结) 再看服务器的工作情况…
余弦相似度计算字符串相似率 功能需求:最近在做通过爬虫技术去爬取各大相关网站的新闻,储存到公司数据中.这里面就有一个技术点,就是如何保证你已爬取的新闻,再有相似的新闻 或者一样的新闻,那就不存储到数据库中.(因为有网站会去引用其它网站新闻,或者把其它网站新闻拿过来稍微改下内容就发布到自己网站中). 解析方案:最终就是采用余弦相似度算法,来计算两个新闻正文的相似度.现在自己写一篇博客总结下. 一.理论知识 先推荐一篇博客,对于余弦相似度算法的理论讲的比较清晰,我们也是按照这个方式来计算相似度的.网…
[TOC] 前言 在自然语言处理过程中,经常会涉及到如何度量两个文本之间的相似性,我们都知道文本是一种高维的语义空间,如何对其进行抽象分解,从而能够站在数学角度去量化其相似性.而有了文本之间相似性的度量方式,我们便可以利用划分法的K-means.基于密度的DBSCAN或者是基于模型的概率方法进行文本之间的聚类分析:另一方面,我们也可以利用文本之间的相似性对大规模语料进行去重预处理,或者找寻某一实体名称的相关名称(模糊匹配).而衡量两个字符串的相似性有很多种方法,如最直接的利用hashcode,以…
通过 采集系统 我们采集了大量文本数据,但是文本中有很多重复数据影响我们对于结果的分析.分析前我们需要对这些数据去除重复,如何选择和设计文本的去重算法?常见的有余弦夹角算法.欧式距离.Jaccard相似度.最长公共子串.编辑距离等.这些算法对于待比较的文本数据不多时还比较好用,如果我们的爬虫每天采集的数据以千万计算,我们如何对于这些海量千万级的数据进行高效的合并去重.最简单的做法是拿着待比较的文本和数据库中所有的文本比较一遍如果是重复的数据就标示为重复.看起来很简单,我们来做个测试,就拿最简单的…