#define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<string.h> #define N 1005 #define MAX 100000 int n, ans, A[N][N], dis[N], vis[N]; void Prim() { memset(vis, , sizeof(vis)); int i, j; ; i <= n; i++) dis[i] = A[][i]; vis[] = ; ans =…
文字描述 用连通网来表示n个城市及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价.对于n个定点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网.现在,我们要选择这样一个生成树,使总的耗费最少.这个问题就是构造连通网的最小代价生成树(Minimum Cost Spanning Tree: 最小生成树)的问题.一棵生成树的代价就是树上各边的代价之和. 有多种算法可以构造最小生成树,其他多数都利用的最小生成的MST(minimum…
我们在图的定义中说过,带有权值的图就是网结构.一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接起来,并且使得权值的和最小.综合以上两个概念,我们可以得出:构造连通网的最小代价生成树,即最小生成树(Minimum Cost Spanning Tree). 找连通图的最小生成树,经典的有两种算法,普里姆算法和克鲁斯卡尔算法,这里介绍普里姆算法. 为了能够讲明白这个算法,我们先构造网图的邻接矩阵,…
普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 65535 typedef char VertexType; typedef int EdgeType; typedef struct { VertexType vexs[MAXVEX]; EdgeType arc[MAXVEX][MAXVEX]; int numVertexes, numEdges; }MGraph…
题目链接 Problem Description Eddy begins to like painting pictures recently ,he is sure of himself to become a painter.Every day Eddy draws pictures in his small room, and he usually puts out his newest pictures to let his friends appreciate. but the res…
题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈. 思路简介:对比普里姆和克鲁斯卡尔算法,克鲁斯卡尔算法主要针对边来展开,边数少时效率比较高,所以对于稀疏图有较大的优势:而普里姆算法对于稠密图,即边数非常多的情况下更好一些.其大致思路为在现有顶点中任意寻找一个顶点,将他作为根结点,然后在与他连接的所有边中,选择一条最短的边,同时将这条边两端的顶点…
还是畅通工程 Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submission(s) : 5   Accepted Submission(s) : 3 Font: Times New Roman | Verdana | Georgia Font Size: ← → Problem Description 某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离.省…
对于一个带权的无向连通图,其每个生成树所有边上的权值之和可能不同,我们把所有边上权值之和最小的生成树称为图的最小生成树. 普里姆算法是以其中某一顶点为起点,逐步寻找各个顶点上最小权值的边来构建最小生成树. 其中运用到了回溯,贪心的思想. 废话少说吧,这个其实是一个模板,直接套用就好!直接上题吧!这些东西多练就好! 一.最小生成树: 题目描述 求一个连通无向图的最小生成树的代价(图边权值为正整数). 输入 第 一行是一个整数N(1<=N<=20),表示有多少个图需要计算.以下有N个图,第i图的第…
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小.该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现:并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现:1959年,艾兹格·迪科斯彻再次发现了该算法.因此,在某些场…
最小生成树: 我们把构造连通网的最小代价生成树称为最小生成树.经典的算法有两种,普利姆算法和克鲁斯卡尔算法. 普里姆算法打印最小生成树: 先选择一个点,把该顶点的边加入数组,再按照权值最小的原则选边,选完最小权值的边,把在所选边的另一顶点的边加入数组,再选权值最小的边,如此循环(有多少顶点循环多少次) ∞ 我们代码中用65535表示 //定义邻接矩阵 let Arr2 = [ [0, 10, 65535, 65535, 65535, 11, 65535, 65535, 65535], [10,…