uva-11426-数论】的更多相关文章

UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gcd(1, n) + gcd(2, n) + ... + gcd(n - 1, n).这种话,就能够得到递推式S(n) = f(2) + f(3) + ... + f(n) ==> S(n) = S(n - 1) + f(n);. 这样问题变成怎样求f(n).设g(n, i),表示满足gcd(x, n)…
题意:求sum(gcd(i,j),1<=i<j<=n). 思路:首先能够看出能够递推求出ans[n],由于ans[n-1]+f(n),当中f(n)表示小于n的数与n的gcd之和 问题转化为了求f(n),由于小于n的数与n的gcd一定是n的因数, 所以f(n)能够表示为sum(i)*i,当中sum(i)表示全部和n的gcd为i的数的数量,我们要求满足gcd(a, n) = i,的个数,能够转化为求gcd(a/i, n/i) = 1的个数, 于是能够发现sun(i) = phi(n/i),这…
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2421 代码及其注释: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <cmath> #include <…
题面 \(\sum_{i=1}^{n}\sum_{j=1}^m\gcd(i,j)\mod998244353\) \(n,m<=10^7\) Sol 简单的一道莫比乌斯反演题 \(原式=\sum_{d=1}^{n}d*\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[gcd(i, j)==1]\) \(设f(i) = \sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\…
题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x有phi(n/i)个,其中Phi为欧拉函数. 所以枚举i和i的倍数n,累加i * phi(n/i)即可. #include <cstdio> typedef long long LL; ; ]; LL f[maxn + ]; void phi_table() { phi[] = ; ; i <…
题意 求Σ{1<=i<N} Σ{i<j<=N} GCD(i, j)     (N<=4000000) 分析 原始思路 暴力求明显是不行的,我们把式子简化形式一下发现它可以写成Σ{2<=j<=N} GCD(1~j-1, j) 这个形式就给我们一种思路:可以只枚举j,然后快速算出GCD(1~j-1, j) 我们当然不能枚举1~j-1那么算,那么再换种思路,枚举可能的答案k,即j的所有约数.分别计算GCD(1~j-1, j) = k的方案数(HDU 1695),然后加起…
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中1<=i <j <n. 要是求gcd(n , x) = y的个数的话,那么就是求gcd(n/y , x/y) = 1的个数,也就是求n/y的欧拉函数.这里先预处理出欧拉函数,然后通过类似筛法的技巧筛选出答案累加起来. #include <iostream> #include &l…
题意: 给出n, k,求 分析: 假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p 则对于某个区间,i∈[l, r],k/i的整数部分p相同,则其余数成等差数列,公差为-p 然后我想到了做莫比乌斯反演时候有个分块加速,在区间[i, n / (n / i)],n/i的整数部分相同,于是有了这份代码. #include <cstdio> #include <algorithm> using namespace std;…
分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include <vector> #include <cmath> #include <map> #include <queue> #include <algorithm> #include <cstring> using namespace std;…
给定一个整数N(1<N<=4000000)的整数求∑GCD(i,j)i=1,2,3....j-1,2<=j<=n的值.参考了一下网上的题解,复述一下我理解后的思路,加深理解: 首先求出N以内的所有数的欧拉函数值phi[i],也就是比i小的与i互质的正整数的个数,比如a,b互质,那么最大公约数就是1,phi[b]值是m,表示与其互质的有m个,也就是这些数公因数之和为m:那么放大到k倍后,k*a和k*b的最大公约数就是k,那么相应的公约数之和变为k*m.数组a[i]就是表示k*b=i时…