清空kafka全部数据】的更多相关文章

1. Kafka全部数据清空 kafka全部数据清空的步骤为: 停止每台机器上的kafka: 删除kafka存储目录(server.properties文件log.dirs配置,默认为“/tmp/kafka-logs”)全部topic的数据目录: 删除zookeeper上与kafka相关的znode节点: 重启kafka.如果删除topic还在则需要重启zookeeper: 这里以192.168.187.201 node1.192.168.187.202 node2.192.168.187.20…
kafka全部数据清空的步骤为: 停止每台机器上的kafka: 删除kafka存储目录(server.properties文件log.dirs配置,默认为“/tmp/kafka-logs”)全部topic的数据目录: 删除zookeeper上与kafka相关的znode节点: 重启kafka.如果删除topic还在则需要重启zookeeper: 这里以192.168.187.201 node1.192.168.187.202 node2.192.168.187.203 node3三台机器作为ka…
数据丢失是一件非常严重的事情事,针对数据丢失的问题我们需要有明确的思路来确定问题所在,针对这段时间的总结,我个人面对kafka 数据丢失问题的解决思路如下: 是否真正的存在数据丢失问题,比如有很多时候可能是其他同事操作了测试环境,所以首先确保数据没有第三方干扰. 理清你的业务流程,数据流向,数据到底是在什么地方丢失的数据,在kafka 之前的环节或者kafka之后的流程丢失?比如kafka的数据是由flume提供的,也许是flume丢失了数据,kafka 自然就没有这一部分数据. 如何发现有数据…
开发Kafka通用数据平台中间件 (含本次项目全部代码及资源) 目录: 一. Kafka概述 二. Kafka启动命令 三.我们为什么使用Kafka 四. Kafka数据平台中间件设计及代码解析 五.未来Kafka开发任务 一. Kafka概述 Kafka是Linkedin于2010年12月份创建的开源消息系统,它主要用于处理活跃的流式数据.活跃的流式数据在web网站应用中非常常见,这些活动数据包括页面访问量(Page View).被查看内容方面的信息以及搜索情况等内容. 这些数据通常以日志的形…
(1)Customer和Customer Group (1)两种常用的消息模型 队列模型(queuing)和发布-订阅模型(publish-subscribe). 队列的处理方式是一组消费者从服务器读取消息,一条消息只由其中的一个消费者来处理. 发布-订阅模型中,消息被广播给所有的消费者,接收到消息的消费者都可以处理此消息. (2)Kafka的消费者和消费者组 Kafka为这两种模型提供了单一的消费者抽象模型: 消费者组 (consumer group). 消费者用一个消费者组名标记自己. 一个…
最近用Maxwell解析MySQL的Binlog,发送到Kafka进行处理,测试的时候发现一个问题,就是Kafka的Offset严重倾斜,三个partition,其中一个的offset已经快200万了,另外两个offset才不到两百.Kafka数据倾斜的问题一般是由于生产者使用的Partition接口实现类对分区处理的问题,一般是对key做hash之后,对分区数取模.当出现数据倾斜时,小量任务耗时远高于其它任务,从而使得整体耗时过大,未能充分发挥分布式系统的并行计算优势(参考Apache Kaf…
KafkaConsumer概念 消费者和消费者群组 Kafka 消费者从属于消费者群组.一个群组里的消费者订阅的是同一个主题,每个消费者接收主题一部分分区的消息. 往群组里增加消费者是横向伸缩消费能力的主要方式. 我们有必要为主题创建大量的分区,在负载增长时可以加入更多的消费者.不要让消费者的数量超过主题分区的数量,多余的消费者只会被闲置.  除了通过增加消费者来横向伸缩单个应用程序外,还经常出现多个应用程序从同一个主题读取数据的情况. Kafka 设计的主要目标之一 ,就是要让 Kafka 主…
不管是把 Kafka 作为消息队列.消息总线还是数据存储平台来使用 ,总是需要有一个可以往 Kafka 写入数据的生产者和一个从 Kafka 读取数据的消费者,或者一个兼具两种角色的应用程序. 开发者们可以使用 Kafka 内置的客户端 API 开发 Kafka 应用程序. 我们将从 Kafra 生产者的设计和组件讲起,学习如何使用 Kafka 生产者.内容包括: 如何创建 KafkaProducer 和 ProducerRecords 对象.如何将记录发送给 Kafka: 如何处理从 Kafk…
问题 向kafka写数据,然后读kafka数据,生产的数据量和消费的数据量对不上. 开始怀疑人生,以前奠定的基础受到挑战... 原来的测试为什么没有覆盖生产量和消费量的对比? 消费者写的有问题?反复检,无果... 再反过来梳理生产者的代码,检查了几遍,也并无发现疏漏. 开始怀疑Kafka 以前看过文章,说kafka数据有可能重复和丢失数据,难道kafka的这么不精确,丢了这么多数据? 原因 最后排查到生产者,kafka生产者使用confluent-kafka-go. 向kafka生产数据的伪代码…
将arvo格式数据发送到kafka的topic 第一步:定制avro schema: { "type": "record", "name": "userlog", "fields": [ {"name": "ip","type": "string"}, {"name": "identity"…