In federated learning, multiple client devices jointly learn a machine learning model: each client device maintains a local model for its local training dataset, while a master device maintains a global model via aggregating the local models from the…
A review of applications in federated learning Authors Li Li, Yuxi Fan, Mike Tse, Kuo-Yi Lin Keywords Federated learning; Literature review; Citation analysis; Research front Abstract FL是一种协作地分散式隐私保护技术,它的目标是克服数据孤岛与数据隐私的挑战.本研究旨在回顾目前在工业工程中的应用,以指导未来的落地应…
本文链接:https://blog.csdn.net/Sinsa110/article/details/90697728代码微众银行+杨强教授团队的联邦学习FATE框架代码:https://github.com/WeBankFinTech/FATE谷歌联邦迁移学习TensorFlow Federated (TFF)框架代码:https://www.tensorflow.org/federated/论文Towards Federated Learning at Scale: System Desi…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. NeurIPS 2019 Workshop on Federated Learning for Data Privacy and Confidentiality, Vancouver, Canada. Abstract 我们解决了非i.i.d.情况下的联邦学习问题,在这种情况下,局部模型漂移,抑制了学习.基于与终身学习的类比,我们将灾难性遗忘的解决方案改用在联邦学习上.我们在损失函数中…