问题描述 LG4377 题解 有 \(n\) 个物品,每个物品有两个权值 \(a,b\) 需要确定一组 \(w_i \in [0,1]\) ,使得 \(\frac{\sum{w_i \times a_i}}{\sum{w_i \times b_i}}\) 最大. 要求 \(\sum{w_i \times b_i \ge W}\) . 分数规划,二分答案的 \(\mathrm{check}\) 函数采用背包进行判断. \(\mathrm{Code}\) #include<bits/stdc++.h…
01分数规划+背包dp 将分式下面的部分向右边挪过去,通过二分答案验证, 注意二分答案中如果验证的mid是int那么l=mid+1,r=mid-1,double类型中r=mid,l=mid; 背包dp中注意所有大于W的要通过min和max将答案归于W,通过dp得到该种情况的最大结果,不能用贪心 #include<bits/stdc++.h> #define rep(i,x,y) for(register int i=x;i<=y;i++) #define dec(i,x,y) for(r…
就是01分数规划的思路,只不过当把w[i]-r*t[i]>0的选完以后如果w值还没达到要求,那就再01背包dp一下就好了(dp时w值>W的时候就存在W里就不会爆内存了). (跑得很慢..大概是二分的姿势有问题...) (貌似还有直接dp的做法?不会) #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<vector> #incl…
分数规划 分数规划可以用来处理有关分数即比值的有关问题. 而分数规划一般不单独设题,而是用来和dp,图论,网络流等算法结合在一起. 而基础的做法一般是通过二分. 二分题目我们都知道,需要求什么的最小或最大值,就二分什么. 而该最小或最大值都会满足单调性. 设当前最大值为\(maxn\),如果存在比值使得比\(maxn\)大,则有\(y/x>maxn\),化简得:\(y-x*maxn>0\) 就可以更新答案.所以满足二分性(即\(maxn\)越大则\(y-maxn*x\))越小则越难更新答案.…
[题目描述] 礼品店一共有N件礼物排成一列,每件礼物都有它的美观度.排在第\(i(1\leq i\leq N)\)个位置的礼物美观度为正整数\(A_I\).JYY决定选出其中连续的一段,即编号为礼物\(i,i+1,-,j-1,j\)的礼物.选出这些礼物的美观程度定义为:\((M(i,j)-m(i,j))/(j-i+K)\),其中\(M(i,j)\)表示\(max\{A_i,A_{i+1}....A_j\}\),\(m(i,j)\)表示\(min\{A_i,A_{i+1}....A_j\}\),\…
http://cogs.pro:8080/cogs/problem/problem.php?pid=vSXNiVegV 题意:给个树,第i个点有两个权值ai和bi,现在求一条长度为m的路径,使得Σai/Σbi最小. 思路:二分答案得p,把每个点权值变成ai-p*bi,看是否存在长为一条长为m的路使总和<=0. tag数组表示从当前位置沿最长链走到底的值,dp数组初值表示从当前位置的重儿子走到底的值(加负号),用tag[...]+dp[..]维护从当前节点往下走若干步得到的最小值(只更新dp数组…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5281 二分一个答案比值,因为最后要*1000,不如先把 v[] *1000,就可以二分整数: 枚举 mid ,如果 mid 小于等于 ans ,则 ∑v[i] - mid * ∑w[i] >= 0,可以继续往大调整,为了使答案最大,背包找一下使这个值最大的组合,看看能否 >=0: 数组开 1000 即可... 把 w 大于 1000 的直接当做最大的 w . 代码如下: #include…
Description 老师想从N名学生中选M人当学霸,但有K对人实力相当,如果实力相当的人中,一部分被选上,另一部分没有,同学们就会抗议.所以老师想请你帮他求出他该选多少学霸,才能既不让同学们抗议,又与原来的M尽可能接近 Input 第一行,三个正整数N,M,K. 第2…K行,每行2个数,表示一对实力相当的人的编号(编号为1…N) Output 一行,表示既不让同学们抗议,又与原来的M尽可能接近的选出学霸的数目.(如果有两种方案与M的差的绝对值相等,选较小的一种:) Sample Input…
[COGS2652]秘术「天文密葬法」(长链剖分,分数规划) 题面 Cogs 上面废话真多,建议直接拉到最下面看一句话题意吧: 给个树,第i个点有两个权值ai和bi,现在求一条长度为m的路径,使得Σai/Σbi最小 题解 看到这个式子就是裸的分数规划吧... 二分一个答案\(k\),式子变成了找一条长度为\(m\)的路径(题目里面路径长度的定义是点数) 满足\(\sum a-k\sum b\le 0\). 首先直接把\(m=-1\)也就是没有限制的点直接判掉,这个东西没有任何意义. (其实\(m…
#2003. 「SDOI2017」新生舞会 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 学校组织了一次新生舞会,Cathy 作为经验丰富的老学姐,负责为同学们安排舞伴. 有 n nn 个男生和 n nn 个女生参加舞会,一个男生和一个女生一起跳舞,互为舞伴.Cathy 收集了这些同学之间的关系,比如两个人之前是否认识,计算得出 ai,j a_{i, j}a​i,j​​,表示第 i ii…
题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include<cstring> #include<algorithm> #define db double using namespace std; ,K=; ; ,c[N][K],fl[N]; db ans; ],nxt[N<<],vl[N],sm[N]; int l[N],v[N],dy[…
分数规划是这样一个东西: 给定若干元素,每个元素有两个属性值\(a_i,b_i\),在满足题目要求的某些限制下选择若干元素并求出\(\frac{\sum a}{\sum b}\)的最大值. 如果没有限制的话,肯定是贪心的选. 假设当前选择了一个解\(x_0\),却并不是\(\frac{\sum a}{\sum b}\)的最大值,我们有 \[\frac{\sum a}{\sum b}>x_0\] 进而 \[\sum a-bx_0>0\] 这时候我们要求的东西变成了\(a-bx_0\),每个元素的…
5281: [Usaco2018 Open]Talent Show Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 79  Solved: 58[Submit][Status][Discuss] Description FarmerJohn要带着他的N头奶牛,方便起见编号为1…N,到农业展览会上去,参加每年的达牛秀!他的第i头奶牛重量为wi,才艺水平为ti,两者都是整数.在到达时,FarmerJohn就被今年达牛秀的新规则吓到了:   (一)参加比…
[BZOJ5281]Talent Show(分数规划) 题面 BZOJ 洛谷 题解 二分答案直接就是裸的分数规划,直接跑背包判断是否可行即可. #include<iostream> #include<cstdio> using namespace std; #define ll long long #define MAX 255 inline int read() { int x=0;bool t=false;char ch=getchar(); while((ch<'0'|…
[题目]#6395. 「THUPC2018」城市地铁规划 / City [题意]给定n个点要求构造一棵树,每个点的价值是一个关于点度的k次多项式,系数均为给定的\(a_0,...a_k\),求最大价值.\(n \leq 3000,k \leq 10\). [算法]背包DP+Prufer序 首先每个点度x的价值g(x)可以暴力预处理.将每个点的度-1后,就不再有树形态这个限制了,只要n个点的度加起来是n-2即可,因为此时只要让所有还原后度不为1的点连通,度为1的叶子节点直接分配. 问题转化为n-2…
5281: [Usaco2018 Open]Talent Show Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 166  Solved: 124[Submit][Status][Discuss] Description FarmerJohn要带着他的N头奶牛,方便起见编号为1…N,到农业展览会上去,参加每年的达牛秀!他的第i头奶牛重 量为wi,才艺水平为ti,两者都是整数.在到达时,FarmerJohn就被今年达牛秀的新规则吓到了: (一)参加…
Description FarmerJohn要带着他的N头奶牛,方便起见编号为1…N,到农业展览会上去,参加每年的达牛秀!他的第i头奶牛重 量为wi,才艺水平为ti,两者都是整数.在到达时,FarmerJohn就被今年达牛秀的新规则吓到了:   (一)参加比赛的一组奶牛必须总重量至少为W   (这是为了确保是强大的队伍在比赛,而不仅是强大的某头奶牛),并且   (二)总才艺值与总重量的比值最大的一组获得胜利.   FJ注意到他的所有奶牛的总重量不小于W,所以他能够派出符合规则(一)的队伍.帮助他…
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的神器,试图借助神器的神秘 力量帮助她们战胜地灾军团. 在付出了惨痛的代价后,精灵们从步步凶险的远古战场取回了一件保存尚完好的神杖.但在经历过那场所有史书都视为禁忌的"诸神黄昏之战"后,神杖上镶嵌的奥术宝石 已经残缺,神力也几乎消耗殆尽.精灵高层在至高会议中决定以举国之力收集残存至今的奥术宝…
「APIO2017」商旅 题目描述 在广阔的澳大利亚内陆地区长途跋涉后,你孤身一人带着一个背包来到了科巴.你被这个城市发达而美丽的市场所深深吸引,决定定居于此,做一个商人.科巴有 \(N\) 个集市,集市用从 \(1\) 到 \(N\) 的整数编号,集市之间通过 \(M\) 条 单向 道路连接,通过每条道路都需要消耗一定的时间. 在科巴的集市上,有 \(K\) 种不同的商品,商品用从 \(1\) 到 \(K\) 的整数编号.每个集市对每种商品都有自己的定价,买入和卖出商品的价格可以是不同的.并非…
「SCOI2014」方伯伯运椰子 可以看出是分数规划 然后我们可以看出其实只需要改变1的流量就可以了,因为每次改变要保证流量守恒,必须流成一个环,在正负性确定的情况下,变几次是无所谓的. 然后按照套路,设 \[ ans=\frac{X-Y}{k}\\ ans\times k =X-Y\\ ans\times k=-\sum w_i\\ \sum ans-w_i=0 \] 从第二部到第三步是把X和Y中的共同边都减掉了 \(w\)是根据扩容或者缩容建的边权为\(b+d,a-d\)的边权集合 注意一点…
「WC2010」重建计划(长链剖分/点分治) 题目描述 有一棵大小为 \(n\) 的树,给定 \(L, R\) ,要求找到一条长度在 \([L, R]\) 的路径,并且路径上边权的平均值最大 \(1 \leq n,L,R \leq 10^5\) 解题思路 : 前几天沉迷初赛来写几道数据结构恢复一下代码能力,坑填完之后可能就要开始啃思维题了QwQ. 这个题貌似长链剖分和点分复杂度都是 \(O(nlog^2n)\) 的,点分好久都没碰了,长链剖分也只有暑假里口胡了几个多校的题而已,先讲做法吧 这个题…
LOJ#3089. 「BJOI2019」奥术神杖 看见乘积就取log,开根号就是除法,很容易发现这就是一道01分数规划.. 然后建出AC自动机直接dp就行,判断条件要设成>0,因为起点的值是1,取完ln后是0 #include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define…
「JSOI2015」送礼物 传送门 看到这题首先想到分数规划. 我们发现对于当前区间,如果它的最大值和最小值不是分居区间的两个端点的话,那么我们显然可以把两端多出去的部分舍掉,因为,在区间最大值最小值都不变的情况下,区间肯定是越短越优的. 但是要注意一点就是区间长度也是有下界的. 所以说我们就先处理所有区间长度为下界 \(L\) 的情况,然后再对区间长度位于 \([L + 1, R]\) 的区间做处理. 二分答案 \(mid\) ,假设当前区间是 \([l, r]\) 那么就有: \[ \fra…
「MoreThanJava」 宣扬的是 「学习,不止 CODE」. 如果觉得 「不错」 的朋友,欢迎 「关注 + 留言 + 分享」,文末有完整的获取链接,您的支持是我前进的最大的动力! Hi~ 这里是 我没有三颗心脏,一个兴趣爱好广泛的 96 年 自由技术人. 都说九月十月是跳槽的高峰期 (也有金九银十的说法),所以 近期 计划出一些 面试求职 相关的文章,这里是系列的第二篇「高质量撰写简历指南」,手把手地说明了如何来编写一个高质量的简历,也算是学习分享,真心的希望对大家有所帮助,如果 觉得不错…
目录 写在前面 定义 引入 构造 暴力 字典图优化 匹配 在线 离线 复杂度 完整代码 例题 P3796 [模板]AC 自动机(加强版) P3808 [模板]AC 自动机(简单版) 「JSOI2007」文本生成器 「BJOI2019」奥术神杖 「SDOI2014」数数 「NOI2011」阿狸的打字机 写在最后 写在前面 这篇文章的主体是在没网的悲惨状况下完成的. 前置知识:Trie 树,DFA,KMP 字符串匹配算法. 请务必深刻理解! 定义 \(|\sum|\):字符集大小,在大多数题目中都等…
纪念博客又一次爆炸了 首先,对于本题中,我们可以发现,保证存在正整数解,就表示一定费用会降低.又因为一旦加大的流量,费用一定会变大,所以总流量一定是不变的 那么我们这时候就需要考虑一个退流的过程 对于原图每一条\(u->v,c>0\)的边,我们在新图中建一条\(v->u,价值是a-d\) 表示退这个流要花费的费用,相当于退流的过程 对于原图任意一条\(u->v\)的边,我们在新图中建一条\(u->v,价值是b+d\)的边,相当于扩流的过程 那么只有成环的时候,才能满足流量平衡…
简介参考 TokuMX 和 MongoDB 各自的官方站点.       ##  Tokutek 最重要的特点和 marketing word 是所谓 fractal tree indexing technology,相关链接: 1. 由于 per-node buffer 的引入所导致的 ACID 里的 Durability 问题应对方式(通过更合理的规划物理机器布局.增加单事务数据量等方式来分摊 fsync 开销:更「松弛」的持久化处理,即不要求每次 operation 都做持久化.而是「延迟…
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k\).第一次修改之前及每次修改之后,都要求你找到一个同样长度为 \(n\) 的单调不降序列 \(B_1, \ldots , B_n\),使得 \(\sum_{i=1}^n (A_i −B_i)^2\) 最小,并输出该最小值.需要注意的是每次操作的影响都是独立的,也即每次操作只会对当前询问造成影响.为…
题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 \(x\) . 不对它进行翻倍操作 : 那么很容易发现 \(\displaystyle [\lceil \frac{x}{2}\rceil, x)\) 的数都不翻倍 . 其余部分任意 . 假设有 \(tot\) 个 . 那么这部分答案就是 \(\displaystyle \binom {n-tot…
无需任何可穿戴设备. 36氪获悉,myShape(原Shapejoy)已于近期完成千万级人民币的Pre-A轮融资,由天奇阿米巴领投,远洋集团.七熹资本以及老股东跟投.过去 myShape 曾获得元迅资本.鼎翔资本以及摩拜创始人夏一平的天使轮融资,至今myShape共获得超3000万人民币的股权融资. myShape 的定位是一家智能健身解决方案提供商,其产品是一款基于机器视觉的智能健身私教,包含了自研的3D动捕技术.姿态识别纠错算法.运动力学的专业知识以及一套强交互性的健身内容. 如下图所示:…