HDU2193-AVL-数据结构-AVL】的更多相关文章

http://blog.csdn.net/GabrieL1026/article/details/6311339 平衡二叉树在进行插入操作的时候可能出现不平衡的情况,AVL树即是一种自平衡的二叉树,它通过旋转不平衡的节点来使二叉树重新保持平衡,并且查找.插入和删除操作在平均和最坏情况下时间复杂度都是O(log n) AVL树的旋转一共有四种情形,注意所有旋转情况都是围绕着使得二叉树不平衡的第一个节点展开的. 1. LL型 平衡二叉树某一节点的左孩子的左子树上插入一个新的节点,使得该节点不再平衡.…
实现: #ifndef AVL_TREE_H #define AVL_TREE_H #include "dsexceptions.h" #include <iostream> // For NULL using namespace std; // AvlTree class // // CONSTRUCTION: with ITEM_NOT_FOUND object used to signal failed finds // // ******************PU…
C - 万恶的二叉树 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 2193 Description An AVL tree is a kind of balanced binary search tree. Named after their invento…
在计算机科学,AVL木是一个平衡树最早发明. 于AVL树节点,而不管是什么的两个子树之一的高度之间最大的区别,因此,它也被称为平衡树高.查找.O(log n). 插入和移除可能需要一个或更多次通过旋转树再次平衡树. 版权声明:本文博主原创文章,博客,未经同意不得转载.…
AVL树的定义 在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为1,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下的时间复杂度都是.增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis,他们在1962年的论文<An algorithm for the organization of information>中发表了它. 节点的平衡因子是…
AVL树本质上还是一棵二叉搜索树,它的特点是: 1.本身首先是一棵二叉搜索树.   2.带有平衡条件:每个结点的左右子树的高度之差的绝对值最多为1(空树的高度为-1).   也就是说,AVL树,本质上是带了平衡功能的二叉查找树(二叉排序树,二叉搜索树).       对Avl树进行相关的操作最重要的是要保持Avl树的平衡条件.即对Avl树进行相关的操作后,要进行相应的旋转操作来恢复Avl树的平衡条件.       对Avl树的插入和删除都可以用递归实现,文中也给出了插入的非递归版本,关键在于要用…
前面所讲的二叉搜索树有个比较严重致命的问题就是极端情况下当数据以排序好的顺序创建搜索树此时二叉搜索树将退化为链表结构因此性能也大幅度下降,因此为了解决此问题我们下面要介绍的与二叉搜索树非常类似的结构就诞生了: AVL(Adelson-Velskii and Landis)树,名字取自其发明者 G.M. Adelson-Velsky 和 E.M. Landis的首字母,AVL树是一棵特殊的二叉搜索树它与普通二叉搜索树最主要的区别就是其能够使二叉搜索树维持其左右节点的平衡: AVL树:其任意一个节点…
前面主要介绍了AVL的基本概念与结构,下面开始详细介绍AVL的实现细节: AVL树实现的关键点 AVL树与二叉搜索树结构类似,但又有些细微的区别,从上面AVL树的介绍我们知道它需要维护其左右节点平衡,实现AVL树关键在于标注节点高度.计算平衡因子.维护左右子树平衡这三点,下面分别介绍: 标注节点高度 从上面AVL树的定义中我们知道AVL树其左右节点高度差不能超过一,所以我们需要标注出每个节点高度: 1.节点高度为最大的子节点高度加1,其中叶子节点高度为1: 2.1与4叶子节点高度为1,节点3高度…
      1.. 平衡二叉树 平衡二叉树要求,对于任意一个节点,左子树和右子树的高度差不能超过1. 平衡二叉树的高度和节点数量之间的关系也是O(logn) 为二叉树标注节点高度并计算平衡因子 AVL树是一棵平衡二叉树 2.. 实现AVL树的业务逻辑 import java.util.ArrayList; public class AVLTree<K extends Comparable<K>, V> { private class Node { public K key; pub…
AVL树(平衡二叉树)定义 AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树,并且拥有自平衡机制.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为平衡二叉树.下面是平衡二叉树和非平衡二叉树对比的例图: 平衡因子(bf):结点的左子树的深度减去右子树的深度,那么显然-1<=bf<=1; AVL树的作用 我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(…
简介 基本概念 AVL 树是最早被发明的自平衡的二叉查找树,在 AVL 树中,任意结点的两个子树的高度最大差别为 1,所以它也被称为高度平衡树,其本质仍然是一颗二叉查找树. 结合二叉查找树,AVL 树具有以下特性: 若任意结点的左子树不为空,则左子树上所有结点的值均小于它的根结点的值 若任意结点的右子树不为空,则右子树上所有结点的值均大于或等于它的根结点的值 任意结点的左.右子树也分别为二叉查找树 任意结点的子树的高度差都小于等于 1 上述的前三项都是二叉查找树的特性,第四个是 AVL 树自平衡…
1.是二叉搜索树(Binary Search Tree) 2.树和所有左右子树高度之差为-1,0,1 平衡因子(balance factor) =右子树高度-左子树高度 平衡化旋转: 1.从插入位置向根节点计算节点的平衡因子: 2.若发现不平衡点(即平衡因子绝对值大于1),从此节点向下取两层: 3.若三节点在同一直线上,则左单旋或右单旋,中间为旋转中心: 4.否则左右双旋或右左双旋,最下为旋转中心.…
平衡二叉树-课程视频 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures…
1066 Root of AVL Tree (25)(25 分) An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore…
之前第5节课留了个疑问,是关于"时间t被安排进R"的时间复杂度能不能为Ο(log2n)?"和BST时间复杂度Ο(h)的关系.第6节对此继续了深入的探讨.首先我们知道BST的h是指树的高,即从根到叶子结点最长路径的长度.但由于树结构不同平衡情况,高h的结果也不一样,如下图所示:  一.结点的高 由此可以看出,平衡树结构下的高h具有计算性.那么接下来我们再看下各结点的高(height of node)的计算方式,它是从该节点位置下到最底部的叶子节点的最长路径长度 (height…
(百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它.…
常见数据结构——树 处理大量的数据时,链表的线性时间太慢了,不宜使用.在树的数据结构中,其大部分的运行时间平均为O(logN).并且通过对树结构的修改,我们能够保证它的最坏情形下上述的时间界. 树的定义有很多种方式.定义树的自然的方式是递归的方式.一棵树是一些节点的集合,这个集合可以是空集,若非空集,则一棵树是由根节点r以及0个或多个非空子树T1,T2,T3,......,Tk组成,这些子树中每一棵的根都有来自根r的一条有向的边所连接. 从递归的定义中,我们发现一棵树是N个节点和N-1条边组成的…
递归反转 二分查找 AVL树 AVL简单的理解,如图所示,底部节点为1,不断往上到根节点,数字不断累加. 观察每个节点数字,随意选个节点A,会发现A节点的左子树节点或右子树节点末尾,数到A节点距离之差不会超过1 一旦添加一个数,使得二叉树结构,存在节点两边子树差大于1,若是右子树大,则左旋:左子树大,则右旋. 旋转规则关键节点就是这个A节点,右子树大,则A节点变为左子树,右子节点替代A节点位置并指向A 红黑树 节点是红色或黑色. 根节点是黑色. 每个叶子节点都是黑色的空节点(NIL节点). 每个…
AVL 平衡树和树旋转 目录 AVL平衡二叉树 树旋转 代码实现 1 AVL平衡二叉树 AVL(Adelson-Velskii & Landis)树是一种带有平衡条件的二叉树,一棵AVL树其实是一棵左子树和右子树高度最多差1的二叉查找树.一棵树的不平衡主要是由于插入和删除的过程中产生的,此时则需要使用旋转来对AVL树进行平衡. AVL Tree: 0 _____|_____ | | 0 0 |___ ___|___ | | | 0 0 0 |__ | 0 插入引起不平衡主要有以下四种情况: In…
AVL树 AVL树,也称平衡二叉搜索树,AVL是其发明者姓名简写.AVL树属于树的一种,而且它也是一棵二叉搜索树,不同的是他通过一定机制能保证二叉搜索树的平衡,平衡的二叉搜索树的查询效率更高. AVL树特点 AVL树是一棵二叉搜索树. AVL树的左右子节点也是AVL树. AVL树拥有二叉搜索树的所有基本特点. 每个节点的左右子节点的高度之差的绝对值最多为1,即平衡因子为范围为[-1,1]. 图中红色数字表示对应节点的高度,可以看到同一层的节点高度差都没有超过1. 二叉搜索树的平衡 基础的二叉搜索…
简介 自平衡二叉树(AVL)属于二叉平衡树的一类,此类树主要完成一个从键到值的查找过程,即字典(或映射),它维护树高度的方式与其他数据结构不同. 自平衡规则: AVL树的左.右子树都是AVL树 左.右子树的高度差不超过1 在数据结构中,最常见的数据间关系的抽象就是集合(Collection)和字典(Dictionary). 集合就是线性表(元素允许重复),而字典是一种非多键映射关系(键不允许重复). 对集合而言,一个班中的所有学生构成一个集合,可以是有序的(有序集合)也可以是无序的(无序集合),…
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 二叉搜索树的深度与搜索效率 我们在树, 二叉树, 二叉搜索树中提到,一个有n个节点的二叉树,它的最小深度为log(n),最大深度为n.比如下面两个二叉树: 深度为n的二叉树 深度为log(n)的二叉树 这两个二叉树同时也是二叉搜索树(参考树, 二叉树, 二叉搜索树).注意,log以2为基底.log(n)是指深度的量级.根据我们对深度的定义,精确的最小深度为floor(log(n)…
AVL树 参考了:http://www.cppblog.com/cxiaojia/archive/2012/08/20/187776.html 修改了其中的错误,代码实现并亲自验证过. 平衡二叉树(Balanced Binary Tree)是二叉查找树的一个进化体,也是第一个引入平衡概念的二叉树.1962年,G.M. Adelson-Velsky 和 E.M. Landis发明了这棵树,所以它又叫AVL树.平衡二叉树要求对于每一个节点来说,它的左右子树的高度之差不能超过1,如果插入或者删除一个节…
平衡树初阶——AVL平衡二叉查找树 一.什么是二叉树 1. 什么是树. 计算机科学里面的树本质是一个树状图.树首先是一个有向无环图,由根节点指向子结点.但是不严格的说,我们也研究无向树.所谓无向树就是将有向树的所有边看成无向边形成的树状图.树是一种递归的数据结构,所以我们研究树也是按照递归的方式去研究的. 2.什么是二叉树. 我们给出二叉树的递归定义如下: (1)空树是一个二叉树. (2)单个节点是一个二叉树. (3)如果一棵树中,以它的左右子节点为根形成的子树都是二叉树,那么这棵树本身也是二叉…
参考资料 <算法(java)>                           — — Robert Sedgewick, Kevin Wayne <数据结构>                                  — — 严蔚敏 [算法]二叉查找树(BST)实现字典API   引子 近日, 为了响应市政府“全市绿化”的号召, 身为共青团员的我决定在家里的后院挖坑种二叉树,以支援政府实现节能减排的伟大目标,并进一步为实现共同富裕和民族复兴打下坚实的基础....  …
单例模式 第一种(懒汉,线程不安全): public class Singleton { private static Singleton instance; private Singleton (){} public static Singleton getInstance() { if (instance == null) { instance = new Singleton(); } return instance; } } 这种写法lazy loading很明显,但是致命的是在多线程不能…
前言 今天要介绍几种高级数据结构AVL树,介绍之前AVL,会先说明平衡二叉树,并将树的学习路线进行总结,并介绍维持平衡的方法:右旋转.左旋转. 一.树学习路线 1.路线总结 总结了一下树的学习路线,如下图: 2.说明 上面这个图要从上往下进行一步一步学习:首先,从二叉树开始学习,要对树的一些概念有一些基本了解,如树的左孩子和右孩子等,然后对树的遍历方法:先序.中序和后序遍历都熟练掌握,有精力再把层序遍历掌握: 接下来,大部分的树,都是在二叉树的基础上加了许多特性而形成的,所以二叉树是基础,如二叉…
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 二叉搜索树的深度与搜索效率 我们在树, 二叉树, 二叉搜索树中提到,一个有n个节点的二叉树,它的最小深度为log(n),最大深度为n.比如下面两个二叉树: 深度为n的二叉树 深度为log(n)的二叉树 这两个二叉树同时也是二叉搜索树(参考树, 二叉树, 二叉搜索树).注意,log以2为基底.log(n)是指深度的量级.根据我们对深度的定义,精确的最小深度为floor(log(n)…
1. AVL定义 AVL树是一种改进版的搜索二叉树.对于一般的搜索二叉树而言,如果数据恰好是按照从小到大的顺序或者从大到小的顺序插入的,那么搜索二叉树就对退化成链表,这个时候查找,插入和删除的时间都会上升到O(n),而这对于海量数据而言,是我们无法忍受的.即使是一颗由完全随机的数据构造成的搜索二叉树,从统计角度去分析,在进行若甘次的插入和删除操作,这个搜索二叉树的高度也不能令人满意.这个时候大家就希望能有一种二叉树解决上述问题.这个时候就出现平衡搜索二叉树,它的基本原理就是在插入和删除的时候,根…
前言:本文章来源于我在知乎上回答的一个问题 AVL树,红黑树,B树,B+树,Trie树都分别应用在哪些现实场景中? 看完后您可能会了解到这些数据结构大致的原理及为什么用在这些场景,文章并不涉及具体操作(如插入删除等等) 文件夹 AVL树 AVL树原理与应用 红黑树 红黑树原理与应用 B/B+树 B/B+树原理与应用 Trie树 Trie树原理与应用 AVL树 简单介绍: AVL树是最早的自平衡二叉树,在早期应用还相对来说比較广.后期因为旋转次数过多而被红黑树等结构代替(二者都是用来搜索的).AV…