使用kNN算法进行分类的原理是:从训练集中选出离待分类点最近的kkk个点,在这kkk个点中所占比重最大的分类即为该点所在的分类.通常kkk不超过202020 kNN算法步骤: 计算数据集中的点与待分类点之间的距离 按照距离升序排序 选出距离最小的kkk个点 计算这kkk个点所在类别出现的频率(次数) 返回出现频率最高的点的类别 代码的实现: 首先导入numpy模块和operator模块,建立一个数据集 from numpy import * import operator def createD…
使用Python实现k-近邻算法的一般流程为: 1.收集数据:提供文本文件 2.准备数据:使用Python解析文本文件,预处理 3.分析数据:可视化处理 4.训练算法:此步骤不适用与k——近邻算法 5.测试算法:使用海伦提供的部分数据作为测试样本.测试样本与非测试样本的区别在于:测试样本是已经完成分类的数据,如果预测分类与实际类别不一样,则标记为一个错误. 6.使用算法:产生简单的命令行程序,然后海伦可以输入一些特征数据来判断对方是否为自己喜欢的类型. 一.数据集介绍: 海伦女士一直使用在线约会…
转自http://blog.csdn.net/nzfxx/article/details/51615439 1.特点及概念介绍 下面给大家讲解一下"二分法查找"这个java基础查找算法,那么什么是二分法呢?其实所谓的"二分法",就是一分为二的意思,综合起来理解就是一分为二的查找,但大家记住了,二分法是建立在"已经按顺序排好"的基础条件上,如果大家把这个二分法查找理解清楚了,那么会有助于你更好的理解快速排序,下面我就罗列出该算法的特点: 1.定义起…
为了实现迁徙学习,首先是数据集的下载 #利用curl下载数据集 curl -o flower_photos.tgz http://download.tensorflow.org/example_images/flower_photos.tgz #在当前路径下对下载的数据集进行解压 tar xzf flower_photos.tgz 下载谷歌提供的训练好的Inception-v3模型 wget -P /Volumes/Cu/QianXi_Learning --no-check-certificat…
K-近邻算法概述 简单的说,K-近邻算法采用不同特征值之间的距离方法进行分类 K-近邻算法 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用范围:数值型和标称型. k-近邻算法的一般流程 收集数据:可使用任何方法 准备数据:距离计算所需要的数值,最好是结构化的数据格式. 分析数据:可以使用任何方法. 训练算法:此步骤不适用于K-近邻算法 使用算法:首先需要输入样本数据和节后话的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分…
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:http://www.searchtb.com/2011/07/%E5%AD%97%E7%AC%A6%E4%B8%B2%E5%8C%B9%E9%85%8D%E9%82%A3%E4%BA%9B%E4%BA%8B%EF%BC%88%E4%B8%80%EF%BC%89.html C语言代码实现转自: htt…
Kaggle网站流量预测任务第一名解决方案:从模型到代码详解时序预测 2017年12月13日 17:39:11 机器之心V 阅读数:5931   近日,Artur Suilin 等人发布了 Kaggle 网站流量时序预测竞赛第一名的详细解决方案.他们不仅公开了所有的实现代码,同时还详细解释了实现的模型与经验.机器之心简要介绍了他们所实现的模型与经验,更详细的代码请查看 GitHub 项目. GitHub 项目地址:https://github.com/Arturus/kaggle-web-tra…
SSD(single shot multibox detector)算法及Caffe代码详解 https://blog.csdn.net/u014380165/article/details/72824889 其中caffe中的特殊层的解释 http://caffe.berkeleyvision.org/tutorial/layers.html…
https://blog.csdn.net/qq_25737169/article/details/79048516 https://www.cnblogs.com/bonelee/p/8528722.html Notes on Batch Normalization Notes on Batch Normalization  发表于 2016-05-28 |  分类于 CNN , Op |  阅读次数: 16077 在训练深层神经网络的过程中, 由于输入层的参数在不停的变化, 因此, 导致了当…
1.NMS的原理 NMS(Non-Maximum Suppression)算法本质是搜索局部极大值,抑制非极大值元素.NMS就是需要根据score矩阵和region的坐标信息,从中找到置信度比较高的bounding box.NMS是大部分深度学习目标检测网络所需要的,大致算法流程为: 1.对所有预测框的置信度降序排序 2.选出置信度最高的预测框,确认其为正确预测,并计算他与其他预测框的IOU 3.根据2中计算的IOU去除重叠度高的,IOU>threshold就删除 4.剩下的预测框返回第1步,直…