Floyd弗洛伊德算法】的更多相关文章

问题简介: 给定T条路,S个起点,D个终点,求最短的起点到终点的距离. 思路简介: 弗洛伊德算法即先以a作为中转点,再以a.b作为中转点,直到所有的点都做过中转点,求得所有点到其他点的最短路径,Floyd算法适用于多源最短路径,是一种动态规划算法,稠密图效果最佳,边权可正可负.优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单.缺点:时间复杂度比较高,不适合计算大量数据.Floyd算法时间复杂度为n^3,Dijikstra算法为n^2. 优化代码: #include <iostre…
转载:https://blog.csdn.net/qq_35644234/article/details/60875818 Floyd算法的介绍 算法的特点 弗洛伊德算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或有向图或负权(但不可存在负权回路)的最短路径问题,同时也被用于计算有向图的传递闭包. 算法的思路 通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入两个矩阵,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离.矩阵P中的元素b…
先看懂如何使用 用Java实现一个地铁票价计算程序 String station = "A1 A2 A3 A4 A5 A6 A7 A8 A9 T1 A10 A11 A12 A13 T2 A14 A15 A16 A17 A18 B1 B2 B3 B4 B5 T1 B6 B7 B8 B9 B10 T2 B11 B12 B13 B14 B15"; 思路:step1: 设计为A1-A18, T1,T2,B1-B15个点 step2:35个点做为arr[35][35],将相邻的点A1-A2 ..…
算法描述: Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法.从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1):又用同样地公式由D(1)构造出D(2):……:最后又用同样的公式由D(n-1)构造出矩阵D(n).矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径. 核心思路:通过一个图…
原博来自http://www.cnblogs.com/skywang12345/ 弗洛伊德算法介绍 和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离. 假设图G中顶点个数为N,…
package com.rao.graph; /** * @author Srao * @className Floyd * @date 2019/12/11 18:43 * @package com.rao.graph * @Description 弗洛伊德算法 */ public class Floyd { final static int INF = Integer.MAX_VALUE; /** * 弗洛伊德算法 * @param matrix */ public static void…
/* 数据结构C语言版 弗洛伊德算法  P191 编译环境:Dev-C++ 4.9.9.2 */ #include <stdio.h>#include <limits.h> #define MAX_NAME 5   // 顶点字符串的最大长度+1#define MAX_INFO 20   // 相关信息字符串的最大长度+1typedef int VRType;   // 顶点关系的数据类型#define INFINITY INT_MAX // 用整型最大值代替∞#define MA…
在网图和非网图中,最短路径的含义不同.非网图中边上没有权值,所谓的最短路径,其实就是两顶点之间经过的边数最少的路径:而对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,我们称路径上第一个顶点是源点,最后一个顶点是终点. 我们讲解两种求最短路径的算法.第一种,从某个源点到其余各顶点的最短路径问题. 1,迪杰斯特拉(Dijkstra)算法 迪杰斯特拉算法是一个按路径长度递增的次序产生最短路径的算法,每次找到一个距离V0最短的点,不断将这个点的邻接点加入判断,更新新加入的点到V0的距…
看完这篇文章写的小程序,Floyd最短路径算法,求从一个点到另一个点的最短距离,中间可以经过其他任意个点.三个for循环,从i到j依次经过k的最短距离,最外层for循环是经过点K,内部两个循环是从i(0)到j(0,1,2,3)经过k(0)的最短距离,从i(1)到j(0,1,2,3)经过k(0)的最短距离,······,从i(3)到j(0,1,2,3)经过k(0)的最短距离:在经过k(0)的基础上再经过k(2),从i(0)到j(0,1,2,3)经过k(1)的最短距离,从i(1)到j(0,1,2,3…
#include <iostream> #include <string> #include <iomanip> using namespace std; #define INFINITY 65535 #define MAX_VERTEX_NUM 10 typedef struct MGraph{ string vexs[10];//顶点信息 int arcs[10][10];//邻接矩阵 int vexnum, arcnum;//顶点数和边数 }MGraph; int…