CVPR2020论文解析:视觉算法加速】的更多相关文章

CVPR2020论文解析:视觉算法加速 GPU-Accelerated Mobile Multi-view Style Transfer 论文链接:https://arxiv.org/pdf/2003.00706.pdf 摘要 据估计,2018年售出的智能手机中,有60%配备了多个后置摄像头,从而实现了3D照片等多种支持3D的应用.3D照片平台(Facebook 3D Photo.Holopix ,等等)的成功依赖于用户生成内容的稳定流量.这些平台必须提供简单的图像处理工具,以促进内容创建,类似…
CVPR2020论文解析:实例分割算法 BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation 论文链接:https://arxiv.org/pdf/2001.00309.pdf 摘要 实例分割是基本的视觉任务之一.近年来,全卷积实例分割方法因其比Mask R-CNN等两阶段方法简单.高效而备受关注.迄今为止,当模型具有相似的计算复杂度时,几乎所有这些方法在掩模精度上都落后于两级掩模R-CNN方法,留下了很大的改进空间.在这项工…
人体姿态和形状估计的视频推理:CVPR2020论文解析 VIBE: Video Inference for Human Body Pose and Shape Estimation 论文链接:https://arxiv.org/pdf/1912.05656.pdf Code and pretrained models are available at: https://github.com/mkocabas/VIBE 摘要 人体运动是理解行为的基础.尽管在单图像三维位姿和形状估计方面取得了进展,…
分层条件关系网络在视频问答VideoQA中的应用:CVPR2020论文解析 Hierarchical Conditional Relation Networks for Video Question Answering 论文链接:https://arxiv.org/pdf/2002.10698.pdf 摘要 视频问答(VideoQA)具有挑战性,因为它需要建模能力来提取动态视觉伪影和远距离关系,并将它们与语言概念相关联.本文介绍了一种通用的可重复使用的神经单元,称为条件关系网络(CRN),它作为…
CVPR2020论文解析:视频分类Video Classification Rethinking Zero-shot Video Classification: End-to-end Training for Realistic Applications 论文链接:https://arxiv.org/pdf/2003.01455.pdf 摘要 深度学习(deep learning,DL)是在大型数据集上进行训练的,它可以将视频准确地分为数百个不同的类.然而,视频数据的注释是昂贵的.Zero-sh…
视频教学动作修饰语:CVPR2020论文解析 Action Modifiers: Learning from Adverbs in Instructional Videos 论文链接:https://arxiv.org/pdf/1912.06617.pdf 摘要 我们提出了一种从结构视频中学习副词表达的方法,该方法使用对伴随叙述的弱监督.我们的方法的关键是,副词的视觉表现高度依赖于它所适用的动作,尽管同一个副词会以类似的方式修改多个动作.例如,虽然"快速传播"和"快速混合&qu…
慢镜头变焦:视频超分辨率:CVPR2020论文解析 Zooming Slow-Mo:  Fast and Accurate One-Stage Space-Time Video Super-Resolution 论文链接:https://arxiv.org/pdf/2002.11616.pdf The source code is released in:https://github.com/Mukosame/ZoomingSlowMo-CVPR-2020 摘要 本文探讨了一种时空视频超分辨率解…
CVPR2020论文解析:视频语义检索 Fine-grained Video-Text Retrieval with Hierarchical Graph Reasoning 论文链接:https://arxiv.org/pdf/2003.00392.pdf 摘要 随着视频在网络上的迅速出现,视频与文本的跨模式检索越来越受到人们的关注.目前解决这个问题的主要方法是学习一个联合嵌入空间来测量跨模态相似性.然而,简单的联合嵌入不足以表示复杂的视觉和文本细节,如场景.对象.动作及其构图.为了改进细粒度…
无监督域对抗算法:ICCV2019论文解析 Drop to Adapt: Learning Discriminative Features for Unsupervised Domain Adaptation 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Lee_Drop_to_Adapt_Learning_Discriminative_Features_for_Unsupervised_Domain_Adaptation…
CVPR2020行人重识别算法论文解读 Cross-modalityPersonre-identificationwithShared-SpecificFeatureTransfer 具有特定共享特征变换的跨模态行人重识别 摘要: 跨模态行人重识别对智能视频分析是一个难点,而又关键的技术.过去的研究主要集中在,将嵌入式不同模态放到同一个特征空间中,来训练常用的表现形式.但是,仅仅训练这些常用的特性,意味着会丢失大量的信息,降低特征显著性的上限. 本文中,通过推荐一个新的特定跨模态特征转换算法(称为c…