Pandas之isna,fillna】的更多相关文章

isna() 释义 筛选为NaN的布尔值,可接受单个标量或者数组 举例 筛选stu_name为NaN的所有行: df = pd.DataFrame({'stu_name': ['Tom', 'Tony', 'Jack', 'Jack', np.nan], 'stu_age': [16, 16, 15, np.nan, 21]}) print(df) df1 = df[df['stu_name'].isna()] print(df1) fillna() 释义 对NaN值进行填充,官方文档 常用参数…
删除表中的某一行或者某一列更明智的方法是使用drop,它不改变原有的df中的数据,而是返回另一个dataframe来存放删除后的数据. (1)清理无效数据 df[df.isnull()] #返回的是个true或false的Series对象(掩码对象),进而筛选出我们需要的特定数据. df[df.notnull()] df.dropna() #将所有含有nan项的row删除 df.dropna(axis=1,thresh=3) #将在列的方向上三个为NaN的项删除 df.dropna(how='A…
numpy.scipy官方文档  pandas官方网站  matplotlib官方文档 一.数据结构 二.数据处理 1.数据获取(excel文件数据基本信息) #coding=utf-8 import pandas as pd import numpy as np excel_data = pd.read_excel("test.xlsx") print excel_data.shape #显示数据多少行多少列 print excel_data.index #显示数据所有行的索引数 p…
目录 Series 利用dict来创建series 利用标量创建series 取 Dataframe 利用dict创建dataframe 选择 添加列 列移除 行的选择, 添加, 移除 Panel Basic Functionality Series DataFrame Descriptive Statistic 绑定自定义函数 pipe, apply, applymap Reindex reindex_like 插补 limit Renaming Iteration iteritems() (…
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者 | 常国珍.赵仁乾.张秋剑 来源 |<Python数据科学:技术详解与商业实践> PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取 http://note.youdao.com/noteshare?id=3054cce4add8a909e784ad934f956cef 数据清洗是数据分析的必备环节,在进行分析过程中,会有很多不符合分析要求的数据,…
https://blog.csdn.net/donghf1989/article/details/51167083/ .使用0替代缺失值(当然你可以用任意一个数字代替NaN) df.fillna(0) 3.用一个字符串代替缺失值 df.fillna('missing')…
# 2.1处理缺失值,连续值用均值填充 continuous_fillna_number = [] for i in train_null_ix: if(i in continuous_ix): mean_v = df_train[i].mean() continuous_fillna_number.append(mean_v) df_train[i] = df_train[i].fillna(mean_v) np.save("continuous_fillna_number.npy"…
本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook .习惯上,我们会按下面格式引入所需要的包: In [1]: import numpy as np In [2]: import pandas as pd In [3]: import matplotlib.pyplot as plt 一.创建对象 可以通过 Data Structure Intro Setion 来…
内容目录 1. 什么是缺失值 2. 丢弃缺失值 3. 填充缺失值 4. 替换缺失值 5. 使用其他对象填充 数据准备 import pandas as pd import numpy as np index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"], name="name") da…
前言: 最近公司有数据分析的任务,如果使用Python做数据分析,那么对Pandas模块的学习是必不可少的: 本篇文章基于Pandas 0.20.0版本 话不多说社会你根哥!开干! pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pandas==0.20.0 一.数据分析需要的基本数据结构 数据统计.分析建立在二维表为基础数据结构之上,每一行称为1个Case,每1列成为1个variable : 按列分析:分析每 1个变量的变化.趋势…