yolo-v2只识别person】的更多相关文章

YOLO V2 YOLO V2是在YOLO的基础上,融合了其他一些网络结构的特性(比如:Faster R-CNN的Anchor,GooLeNet的\(1\times1\)卷积核等),进行的升级.其目的是弥补YOLO的两个缺陷: YOLO中的大量的定位错误 和基于区域推荐的目标检测算法相比,YOLO的召回率(Recall)较低. YOLO V2的目标是:在保持YOLO分类精度的同时,提高目标定位的精度以及召回率.其论文地址: YOLO 9000:Better,Faster,Stronger. YO…
以下都是基于yolo v2版本的,对于现在的v3版本,可以先clone下来,再git checkout回v2版本. 玩了三四个月的yolo后发现数值相当不稳定,yolo只能用来小打小闹了. v2训练的权重用v3做预测,结果不一样. 我的环境是 window 10 + cuda9.0 + opencv 3.4.0 + VS2015 先在这个地方下源文件:https://github.com/AlexeyAB/darknet 下好后,先打开用文本编辑器打开 darknet.vcxproj,将两处 c…
损失函数的定义是在region_layer.c文件中,关于region层使用的参数在cfg文件的最后一个section中定义. 首先来看一看region_layer 都定义了那些属性值: layer make_region_layer(int batch, int w, int h, int n, int classes, int coords) { layer l = {}; l.type = REGION; l.n = n; // anchors 的个数, 文章中选择为5 l.batch =…
[目录] 一. 安装Darknet(仅CPU下) 2 1.1在CPU下安装Darknet方式 2 1.2在GPU下安装Darknet方式 4 二. YOLO.V3训练官网数据集(VOC数据集/COCO数据集) 4 2.1下载VOC数据集/COCO数据集 4 2.2下载预训练的模型(.weights文件) 8 三. YOLO.V3训练自己的数据集(以3类别的为例) 8 3.1制作自己的VOC格式训练集 8 3.1.1图像(.jpg)进行重命名(00000X.jpg) 9 3.1.2制作图像的.xm…
背景 YOLO v1检测效果不好,且无法应用于检测密集物体. 方法 YOLO v2是在YOLO v1的基础上,做出如下改进. (1)引入很火的Batch Normalization,提高mAP和训练速度: (2)加入了Anchor Box机制,每个grid cell5个Anchor Box: (3)自动选择Anchor Box,这是作者所作出的创新,之前Anchor Box都是人为直接规定的,显然不是很合理.作者通过K-means聚类算法,用IoU作为距离度量,生成了Anchor Box的尺度.…
概述 YOLO(You Only Look Once: Unified, Real-Time Object Detection)从v1版本进化到了v2版本,作者在darknet主页先行一步放出源代码,论文在我们等候之下终于在12月25日发布出来. 新的YOLO版本论文全名叫“YOLO9000: Better, Faster, Stronger”,主要有两个大方面的改进: 第一,作者使用了一系列的方法对原来的YOLO多目标检测框架进行了改进,在保持原有速度的优势之下,精度上得以提升.VOC 200…
1. 前言 关于用yolo训练自己VOC格式数据的博文真的不少,但是当我按照他们的方法一步一步走下去的时候发现出了其他作者没有提及的问题.这里就我自己的经验讲讲如何训练自己的数据集. 2.数据集 这里建议大家用VOC和ILSVRC比赛的数据集,因为xml文件都是现成的,省去很多功夫.当然除非你是个执着的孩子就想凭借着非人的毅力和追逐斗鸡眼这种个性特征而自己去标记label. 勤劳的孩子想自己标记的可以自己去github搜索 labelImg , 下载好make后直接运行就可以.具体使用方法先不做…
概述 第一,在保持原有速度的优势之下,精度上得以提升.VOC 2007数据集测试,67FPS下mAP达到76.8%,40FPS下mAP达到78.6%,可以与Faster R-CNN和SSD一战 第二,提出了一种目标分类与检测的联合训练方法.通过这种方法,YOLO9000可以同时在COCO和ImageNet数据集中进行训练,训练后的模型可以实现多达9000种物体的实时检测. 速览YOLOv1步骤 (1) 将图像划分成7 * 7的网格. (2) 每个网格预测2个bouding box(每个box包含…
一.修改源代码 (1)修改cfg/voc.data classess=20    改成 classes = 1 (2)修改data/voc.names 只留下person这一类 (3)修改examples/detector.c void run_detector(int argc, char **argv)//该函数中,倒数第三行.line=542 );//最后一个参数修改成1 void test_detector(char *datacfg, char *cfgfile, char *weig…
目标检测模型主要分为two-stage和one-stage, one-stage的代表主要是yolo系列和ssd.简单记录下学习yolo系列的笔记. 1 yolo V1 yolo v1是2015年的论文you only look once:unified,real-time object detection 中提出,为one-stage目标检测的开山之作.其网络架构如下:(24个卷积层和两个全连接层,注意最后一个全连接层可以理解为1*4096到1*1470(7*7*30)的线性变换) yolo…