数据结构与算法--最短路径之Floyd算法 我们知道Dijkstra算法只能解决单源最短路径问题,且要求边上的权重都是非负的.有没有办法解决任意起点到任意顶点的最短路径问题呢?如果用Dijkstra算法,可以这样做: Dijkstra[] all = new Dijkstra[graph.vertexNum()]; for (int i = 0; i < all.length; i++) { all[i] = new Dijkstra(graph, i); } for (int s = 0; s…
数据结构与算法--最短路径之Bellman算法.SPFA算法 除了Floyd算法,另外一个使用广泛且可以处理负权边的是Bellman-Ford算法. Bellman-Ford算法 假设某个图有V个顶点E条边. 该算法主要流程是: 初始化.到起点s的距离distTo[s]设置为0,其余顶点的dist[]设置为正无穷: 以任意次序放松图中的所有E条边,重复V轮: V轮放松结束后,判断是否存在负权回路.如果存在,最短路径没有意义. 根据流程可以给出代码,如下 package Chap7; import…
数据结构与算法--最短路径之Dijkstra算法 加权图中,我们很可能关心这样一个问题:从一个顶点到另一个顶点成本最小的路径.比如从成都到北京,途中还有好多城市,如何规划路线,能使总路程最小:或者我们看重的是路费,那么如何选择经过的城市可以使得总路费降到最低? 首先路径是有向的,最短路径需要考虑到各条边的方向. 权值不一定就是指距离,还可以是费用等等... 最短路径的定义:在一幅有向加权图中,从顶点s到顶点t的最短路径是所有从s到t的路径中权值最小者. 为此,我们先要定义有向边以及有向图. 加权…
算法介绍 和Dijkstra算法一样,Floyd算法也是为了解决寻找给定的加权图中顶点间最短路径的算法.不同的是,Floyd可以用来解决"多源最短路径"的问题. 算法思路 算法需要引入两个二维数组ShortPathTable和Patharc.ShortPathTable表示顶点到顶点的最短路径权值和的矩阵,Patharc表示对应顶点的最小路径的前驱矩阵.在为分析任何顶点之前,ShortPathTable初始化为图的邻接矩阵. 假设图G有N个顶点,那么需要对矩阵ShortPathTabl…
Floyd-Warshall算法,简称Floyd算法,用于求解任意两点间的最短距离,时间复杂度为O(n^3). 使用条件&范围通常可以在任何图中使用,包括有向图.带负权边的图. Floyd-Warshall 算法用来找出每对点之间的最短距离.它需要用邻接矩阵来储存边,这个算法通过考虑最佳子路径来得到最佳路径. 1.注意单独一条边的路径也不一定是最佳路径.2.从任意一条单边路径开始.所有两点之间的距离是边的权,或者无穷大,如果两点之间没有边相连.对于每一对顶点 u 和 v,看看是否存在一个顶点 w…
Floyd算法 Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 正如我们所知道的,Floyd算法用于求最短路径.Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3). Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B.所…
为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是一个简单的3个顶点的连通网图. 我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点的最短路径权值和的矩阵.P代表对应顶点的最短路径的前驱矩阵.在未分析任何顶点之前,我们将D命名为D(-1),其实它就是初始图的邻接矩阵.将P命名为P(-1), 初始化为图中的矩阵. 首先我们来分析,所有的顶点经过v0后到达另一顶点的最短路径.因为只有3个顶点,因此需要查看v1->v0->v2,得到…
Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floyd算法是一种在有权图中(有确定的非负的权值,不能存在环路)查找最短路径的算法.该算法的一次简单执行可以找出任意结点之间的最短路径(尽管它没有返回路径的具体信息). 思想: Floyd算法通过比较图中任意两点间所有可能存在的路径长度得到最短路径长度. 我们定义一个函数shortestPath(i,j,…
floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法,只不过它的时间复杂度高,为o(v^3),用的时候需要谨慎. floyd的精髓部分在于实现其思想的三个for循环,而它的主要思想:如果存在一个点k,使得dis[s][t]<dis[s][k]+dis[k][t],那么我们就更新dis[s][t]. #include<iostream>//fl…
1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也就是求源点到整个图的最短,次短距,第三短距离等(这些距离都是源点到某个点的最短距离)...求出的每个距离都对应一个点,也就是要到的到这个点,求的也就是原点到所有点的最短距离,并存在二维数组中,给出目的点就能直接通过查表获得最短距离. 第1步:以源点START(假设s1)为始点,求最短距离,如何求?…