CNN对于旋转不具有等变性,对于平移有等变性,data augmentation的提出就是为了解决这个问题,但是data augmentation需要很大的模型容量,更多的迭代次数才能够在训练数据集合上对旋转等变,对于测试集合,也不一定能够保证等变 可能大家会问,旋转等变网络有什么优点?data augmentation有什么优点,旋转等变网络就有什么优点,比如,不同方向的狗,转了一个方向之后还是一个狗,cnn希望经过多层卷积之后的feature也只是转了一个方向.16年的一篇ICML论文应运而…