Pytorch:使用GPU训练】的更多相关文章

Pytorch多GPU训练 临近放假, 服务器上的GPU好多空闲, 博主顺便研究了一下如何用多卡同时训练 原理 多卡训练的基本过程 首先把模型加载到一个主设备 把模型只读复制到多个设备 把大的batch数据也等分到不同的设备 最后将所有设备计算得到的梯度合并更新主设备上的模型参数 代码实现(以Minist为例) #!/usr/bin/python3 # coding: utf-8 import torch from torchvision import datasets, transforms…
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/weixin_40087578/article/details/87186613这里记录用pytorch 多GPU训练 踩过的许多坑   仅针对单服务器多gpu 数据并行 而不是 多机器分布式训练 一.官方思路包装模型 这是pytorch 官方的原理图  按照这个官方的原理图  修改应该参照 https://blog.csdn.net/qq…
# 1: torch.cuda.set_device(1) # 2: device = torch.device("cuda:1") # 3:(官方推荐)import os os.environ["CUDA_VISIBLE_DEVICES"] = '1' (同时调用两块GPU的话) os.environ["CUDA_VISIBLE_DEVICES"] = '1,2'…
原因可能是pytorch 自带的BN bug:安装nvidia apex 可以解决: $ git clone https://github.com/NVIDIA/apex $ cd apex $ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./…
前言 在数据越来越多的时代,随着模型规模参数的增多,以及数据量的不断提升,使用多GPU去训练是不可避免的事情.Pytorch在0.4.0及以后的版本中已经提供了多GPU训练的方式,本文简单讲解下使用Pytorch多GPU训练的方式以及一些注意的地方. 这里我们谈论的是单主机多GPUs训练,与分布式训练不同,我们采用的主要Pytorch功能函数为DataParallel而不是DistributedParallel,后者为多主机多GPUs的训练方式,但是在实际任务中,两种使用方式也存在一部分交集.…
%matplotlib inline 训练一个分类器 上一讲中已经看到如何去定义一个神经网络,计算损失值和更新网络的权重. 你现在可能在想下一步. 关于数据? 一般情况下处理图像.文本.音频和视频数据时,可以使用标准的Python包来加载数据到一个numpy数组中. 然后把这个数组转换成 torch.*Tensor. 图像可以使用 Pillow, OpenCV 音频可以使用 scipy, librosa 文本可以使用原始Python和Cython来加载,或者使用 NLTK或 SpaCy 处理 特…
pytorch的并行分为模型并行.数据并行 左侧模型并行:是网络太大,一张卡存不了,那么拆分,然后进行模型并行训练. 右侧数据并行:多个显卡同时采用数据训练网络的副本. 一.模型并行 二.数据并行 数据并行的操作要求我们将数据划5分成多份,然后发送给多个 GPU 进行并行的计算. 注意:多卡训练要考虑通信开销的,是个trade off的过程,不见得四块卡一定比两块卡快多少,可能是训练到四块卡的时候通信开销已经占了大头 下面是一个简单的示例.要实现数据并行,第一个方法是采用 nn.parallel…
MinkowskiEngine多GPU训练 目前,MinkowskiEngine通过数据并行化支持Multi-GPU训练.在数据并行化中,有一组微型批处理,这些微型批处理将被送到到网络的一组副本中. 首先定义一个网络. import MinkowskiEngine as ME from examples.minkunet import MinkUNet34C # Copy the network to GPU net = MinkUNet34C(3, 20, D=3) net = net.to(…
一.问题 使用deeplearning4j进行GPU训练时,可能会出现java.lang.UnsatisfiedLinkError: no jnicudnn in java.library.path错误. 二.错误 15:43:26.389 [main] INFO org.nd4j.linalg.api.ops.executioner.DefaultOpExecutioner - Backend used: [CUDA]; OS: [Windows 10] 15:43:26.390 [main]…
关于多gpu训练,tf并没有给太多的学习资料,比较官方的只有:tensorflow-models/tutorials/image/cifar10/cifar10_multi_gpu_train.py 但代码比较简单,只是针对cifar做了数据并行的多gpu训练,利用到的layer.activation类型不多,针对更复杂网络的情况,并没有给出指导.自己摸了不少坑之后,算是基本走通了,在此记录下 一.思路 单GPU时,思路很简单,前向.后向都在一个GPU上进行,模型参数更新时只涉及一个GPU.多G…