Python——决策树实战:california房价预测 编译环境:Anaconda.Jupyter Notebook 首先,导入模块: import pandas as pd import matplotlib.pyplot as plt %matplotlib inline 接下来导入数据集: from sklearn.datasets.california_housing import fetch_california_housing housing = fetch_california_…
科学经得起实践检验-python3.6通过决策树实战精准准确预测今日大盘走势(含代码) 春有百花秋有月,夏有凉风冬有雪: 若无闲事挂心头,便是人间好时节. --宋.无门慧开 不废话了,以下训练模型数据,采用本人发明的极致800实时指数近期的一些实际数据, 预测采用今日的真实数据 #coding=utf-8 __author__ = 'huangzhi' import math import operator def calcShannonEnt(dataset): numEntries = le…
目录 波士顿房价预测 导入模块 获取数据 打印数据 特征选择 散点图矩阵 关联矩阵 训练模型 可视化 波士顿房价预测 导入模块 import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from matplotlib.font_manager import FontProperties from sklearn.linear_model import LinearReg…
波士顿房价预测 Boston housing 这是一个波士顿房价预测的一个实战,上一次的Titantic是生存预测,其实本质上是一个分类问题,就是根据数据分为1或为0,这次的波士顿房价预测更像是预测一个连续值,当然这也是一个非常经典的机器学习案例Boston housing 如果想了解更多的知识,可以去我的机器学习之路 The Road To Machine Learning通道 @ 目录 活动背景 数据介绍 详细代码解释 导入Python Packages 读入数据 Read-In Data…
决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(…
摘要:本部分对决策树几种算法的原理及算法过程进行简要介绍,然后编写程序实现决策树算法,再根据Python自带机器学习包实现决策树算法,最后从决策树引申至集成学习相关内容. 1.决策树 决策树作为一种常见的有监督学习算法,在机器学习领域通常有着不错的表现,决策树在生活中决策去做某件事时,会根据自己的经验考虑到多种因素,那么在程序逻辑中使用if~else的堆叠,决定最终结果的过程其实就算是决策树的一种体现,如下图(举个不太恰当的例子).学术一点来说,决策树就是根据以往发生的事的概率,来评估风险,作出…
python机器学习实战(二) 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7159775.html 前言 这篇notebook是关于机器学习中的决策树算法,内容包括决策树算法的构造过程,使用matplotlib库绘制树形图以及使用决策树预测隐形眼睛类型.  操作系统:ubuntu14.04(win也ok)   运行环境:anaconda-python2.7-jupyter notebook    参考书籍:机器学习实战和…
通过上一节的探索,我们会得到几个相对比较满意的模型,本节我们就对模型进行调优 网格搜索 列举出参数组合,直到找到比较满意的参数组合,这是一种调优方法,当然如果手动选择并一一进行实验这是一个十分繁琐的工作,sklearn提供了GridSearch-网格搜索方法,我们只需要将每一个参数的取值告诉它,网格搜索将使用交叉验证方法对所有情况进行验证,并返回结果最好的组合. from sklearn.model_selection import GridSearchCV param_grid = [ # 1…
机器学习入门项目分享 - 波士顿房价预测 该分享源于Udacity机器学习进阶中的一个mini作业项目,用于入门非常合适,刨除了繁琐的部分,保留了最关键.基本的步骤,能够对机器学习基本流程有一个最清晰的认识: 项目描述 利用马萨诸塞州波士顿郊区的房屋信息数据训练和测试一个模型,并对模型的性能和预测能力进行测试: 项目分析 数据集字段解释: RM: 住宅平均房间数量: LSTAT: 区域中被认为是低收入阶层的比率: PTRATIO: 镇上学生与教师数量比例: MEDV: 房屋的中值价格(目标特征,…
在我写的这本书,<基于股票大数据分析的Python入门实战(视频教学版)>里,用能吸引人的股票案例,带领大家入门Python的语法,数据分析和机器学习. 京东链接是这个:https://item.jd.com/12868774.html​ 在本文里,就将通过截图,详细展示本书给出的若干案例,这些案例的代码,均在本书里. 1 用爬虫得到股票数据的效果图…