BEGIN LIS: 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N.比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等.这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8…
问题描述: 问题] 求两字符序列的最长公共字符子序列 注意: 并不要求子串(字符串一)的字符必须连续出现在字符串二中. 思路分析: 最优子结构和重叠子问题的性质都具有,所以要采取动态规划的算法 最长公共子序列的结构 设序列X=x1, x2, -, xm和Y=y1, y2, -, yn的一个最长公共子序列Z=z1, z2, -, zk,则: 1.若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列: 2.若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列: 3…
最长公共子序列+sdutoj2080改编: http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Contest/contestproblem/cid/2788/pid/2080 传送门: https://blog.csdn.net/sunshine_pb/article/details/21820159 设序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列为Z={z1,z2,…,zk}, 记:    Xk为序列X中前k…
一些概念: (1)子序列: 一个序列A = a1,a2,--an,中任意删除若干项,剩余的序列叫做A的一个子序列.也可以认为是从序列A按原顺序保留任意若干项得到的序列.例如:   对序列 1,3,5,4,2,6,8,7来说,序列3,4,8,7 是它的一个子序列.对于一个长度为n的序列,它一共有2^n 个子序列,有(2^n – 1)个非空子序列. 请注意:子序列不是子集,它和原始序列的元素顺序是相关的. (2)公共子序列 : 顾名思义,如果序列C既是序列A的子序列,同时也是序列B的子序列,则称它为…
什么是最长公共子序列 X=ACCG Y=CCAGCA 长度为1的公共子序列: {A} {C} {G} 长度为2的公共子序列:{AC} {CC} {CG} {AG} 长度为3的公共子序列:{ACG} 长度为4的公共子序列 最长公共子序列即为 {ACG} 问题:长度为N和M的两个序列如何求他们的最长公共子序列? X = ACCGGGTTACCGTTTAAAACCCGGGTAACCT Y = CCAGGACCAGGGACCGTTTACCAGCCTTAAACCA 简单算法 for (int i=N; i…
一些概念: (1)子序列: 一个序列A = a1,a2,……an,中任意删除若干项,剩余的序列叫做A的一个子序列.也可以认为是从序列A按原顺序保留任意若干项得到的序列. 例如:   对序列 1,3,5,4,2,6,8,7来说,序列3,4,8,7 是它的一个子序列.对于一个长度为n的序列,它一共有2^n 个子序列,有(2^n – 1)个非空子序列. 请注意:子序列不是子集,它和原始序列的元素顺序是相关的. (2)公共子序列 : 顾名思义,如果序列C既是序列A的子序列,同时也是序列B的子序列,则称它…
问题描述: 给定两个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列.(给定两个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列.) 细节须知(与之前随笔的对比): 将由数组存储起来一并输出至文件修改为边运行边输出,增加了程序的鲁棒性. 算法原理: a.最长公共子序列的结构 对X的所有子序列,检查它是否也是Y的子序列,从而确定它是否为X和Y的公共子序列.并且在检查过程中记录最长的公共子序列.X的所有子序列都检查过后即可…
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个序列中的部分(不要求连续),这个就叫做公共子序列,然后最长公共子序列自然就是所有的子序列中最长的啦. 既然是动态规划,难点肯定是在转移方程那了.首先我们用一张网上流传的图: 我个人觉得这张图最好的阐述了这个问题的解法.下面说一下我的理解:首先我们要考虑怎么表示LCS中的各个状态,这个知道的可能觉得很…
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的最长公共子串方法.最长公共子串用动态规划可实现O(n^2)的时间复杂度,O(n^2)的空间复杂度:还可以进一步优化,用后缀数组的方法优化成线性时间O(nlogn):空间也可以用其他方法优化成线性.3.LIS(最长递增序列)DP方法可实现O(n^2)的时间复杂度,进一步优化最佳可达到O(nlogn)…
lis: 复杂度nlgn #include<iostream> #include<cstdio> using namespace std; ],lis[],res=; int solve(int x) { ,b=res; while(a!=b) { ; if(lis[mid]>=x) b=mid; else a=mid+; } return a; } int main() { int n; cin>>n; ;i<=n;i++) scanf("%d&…
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出 一个数,即最长公共子序列的长度 输入样例 5 3 2 1 4 5 1 2 3 4 5 输出样例 3 说明 对于50%的数据,n≤1000 对于100%的数据,n≤100000 思路 常见的LCS问题是通过O(n2)的DP解决的,显然此题的数据是过不去的 如何想办法? 这里就要参考在特殊条件下LCS与LIS(最长上升序列)的转换 我们记录下第一个…
1.LIS : 给定一个序列,求它的最长上升子序列(n<=2000) 第一种 O(n^2): dp[i] 为以i为开头的最长上升子序列长度 code1: #include<cstdio> #include<iostream> using namespace std; int n,ans; int a[2005],dp[2005]; int main(){ scanf("%d",&n); for(int i=1;i<=n;i++){ scanf…
最长公共子序列(LCS) [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj.例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列. 考虑最长公共子序列问题如何分解成…
1. 两者区别 约定:在本文中用 LCStr 表示最长公共子串(Longest Common Substring),LCSeq 表示最长公共子序列(Longest Common Subsequence). 子串要求在原字符串中是连续的,而子序列则没有要求.例如: 字符串 s1=abcde,s2=ade,则 LCStr=de,LCSeq=ade. 2. 求最长公共子串(LCStr) 算法描述:构建如下图的矩阵dp[][],当s1[i] == s2[j] 的时候,dp[i][j]=1:最后矩阵中斜对…
单调递增最长子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4   输入 第一行一个整数0<n<20,表示有n个字符串要处理随后的n行,每行有一个字符串,该字符串的长度不会超过10000 输出 输出字符串的最长递增子序列的长度 样例输入 3 aaa ababc abklmncdefg 样例输出 1 3 7 [分析] [代码] #include <cstdio>…
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 Palindrome Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4532    Accepted Submission(s): 1547 Problem Description A palindrome is a symmetri…
最长公共子序列,即给出两个序列,给出最长的公共序列,例如: 序列1 understand 序列2 underground 最长公共序列undernd,长度为7 一般这类问题很适合使用动态规划,其动态规划描述如下: 设序列1为s,序列2为t,则 if s[i+1]==t[j+1] dp[i+1][j+1]=dp[i][j]+1 else dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]) 代码如下: #pragma once #include <string> usi…
字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij = yj.例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列.对给定的两个字符序列,求出他们最长的公共子序列长度,以及最长公共子序列个数. Solution 这题其实就是让…
题意:给定两个字符串,让你找出它们之间最长公共子序列(LCS)的长度. 析:很明显是个DP,就是LCS,一点都没变.设两个序列分别为,A1,A2,...和B1,B2..,d(i, j)表示两个字符串LCS长度. 当A[i] = B[j] 时,这个最长度就是上一个长度加1,即:d(i, j) = d(i-1, j-1) + 1; 当A[i] != B[j] 时,那就是前面的最长长度(因为即使后面的不成立,也不会影响前面的),即:d(i, j) = max{d(i-1, j), d(i, j-1)}…
36-最长公共子序列 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:18 submit:38 题目描述: 咱们就不拐弯抹角了,如题,需要你做的就是写一个程序,得出最长公共子序列. tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列. 输…
LIS问题: 设\(f[i]\)为以\(a[i]\)结尾的最长上升子序列长度,有: \[f[i]=f[j]+1(j<i&&a[j]<a[i])\] 可以用树状数组优化至\(O(nlogn)\) 基于排列的LCS问题(\(a,b\)均为排列,即一个元素不会出现多次): 设\(pos_i\)为\(a_i\)在\(b\)中出现的位置,即\(a_i=b_pos_i\). \(a\)的一个子序列\(a_p_1,a_p_2,...,a_p_m\)是\(a,b\)的公共子序列等价于\(pos…
最长公共子序列(不连续) 实际问题中也有比较多的应用,比如,论文查重这种,就是很实际的一个使用方面. 这个应该是最常见的一种了,不再赘述,直接按照转移方程来进行: 按最普通的方式就是,直接构造二维矩阵,两个序列分别是Ai 以及 Bj ,c[i,j]就表示的是第一个序列的从开始到第Ai个元素,以及第二个序列的从开始到第Bj个元素,这两部分序列的最长的公共子序列,如果ai==bj,则斜对角加1,否则就是前面和上面的元素中最大的那一个,就是按照这种方式,一层层的向下递推. 最长连续公共子序列 就是st…
原题链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1006 题目分析: 首先先知道LCS问题,这有两种: Longest Common Substiring -- 最长公共子串 Longest Common Sequence -- 最长公共子序列 这两者的区别是:前者必须是原字符串中连续的一段,后者可以是在原字符串中随意抽取的一些字符串拼凑成的字符串,只需要遵守顺序即可也就是说:子串字符的位置必须是连续的,子序…
最长上升子序列,问题定义:http://blog.csdn.net/chenwenshi/article/details/6027086 代码: public static void getData( char[] L ) { int len = L.length; int[] f = new int[len]; String[] res = new String[len]; ; i < len; i++ ) { f[i] = ; res[i] = "" + L[i]; ; j…
给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdkscab ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最长的子序列. 收起 输入 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) 输出 输出最长的子序列,如果有多个,随意输出1个. 输入样例 abcicba abdkscab 输出样例 abca 思路就是先求最长公共子序列,然后再根据路径逆推,找到匹配点. #include<ios…
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子序列的长度 输入输出样例 输入样例#1: 5 3 2 1 4 5 1 2 3 4 5 输出样例#1: 3 说明 [数据规模] 对于50%的数据,n≤1000 对于100%的数据,n≤100000 Solve 首先,来看一下N2N^2N2的算法: dp[i][j]={max(dp[i][j],dp[i…
LIS(最长递增子序列)和LCS(最长公共子序列)的总结 最长公共子序列(LCS):O(n^2) 两个for循环让两个字符串按位的匹配:i in range(1, len1) j in range(1, len2) s1[i - 1] == s2[j - 1], dp[i][j] = dp[i - 1][j -1] + 1; s1[i - 1] != s2[j - 1], dp[i][j] = max (dp[i - 1][j], dp[i][j - 1]); 初始化:dp[i][0] = dp…
F - LCS Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement You are given strings ss and tt. Find one longest string that is a subsequence of both ss and tt. Notes A subsequence of a string xx is the string obtained by r…
1.最长递增子序列模板poj2533(时间复杂度O(n*n)) #include<iostream> #include<stdio.h> #include<string.h> using namespace std; int dp[1005],a[1005]; int main() { int n; while(scanf("%d",&n)>0) { for(int i=1;i<=n;i++) scanf("%d&quo…
最长公共子序列问题 在这里介绍一种在动态规划中类似于板子题的类型 : 最长公共子序列问题.(Link) 首先来看题面:给出1-n的两个排列P1和P2,求它们的最长公共子序列. 我们看到题之后的第一个想法肯定就是一个O(n^2) 的DP,但是看到数据: 对于\(100\)%的数据,\(n≤100000\) 那么我们知道肯定是过不了的了,那么我们考虑一个\(O(nlogn)\)的DP方法. 首先构造一个\(K[MAXN]\)数组,这个数组的用处是用来记录一个数字在字串S1中的位置.因为S1和S2都是…