MapReduce框架中的Shuffle机制】的更多相关文章

Shuffle是map和reduce中间的数据调度过程,包括:缓存.分区.排序等. Shuffle数据调度过程: map task处理hdfs文件,调用map()方法,map task的collect thread将map()方法结果放入环形缓冲区(默认大小100M) 当环形缓冲区达到阈值(80%),将会触发溢出操作,split thread线程会调用HashPartitioner或者自定义的分区规则,对缓冲区内容进行分区,区内文件内容有序. 当环形缓冲区再次达到阈值,会再次触发溢出操作,重复步…
几天前和一位前辈聊起了Spring技术,大佬突然说了SPI,作为一个熟练使用Spring的民工,心中一紧,咱也不敢说不懂,而是在聊完之后赶紧打开了浏览器,开始的学习之路,所以也就有了这篇文章.废话不多说,咱们开始正文. 定义 SPI的英文全称就是Service Provider Interface,看到全称,心里就有了底了,这是一种将服务接口与服务实现分离以达到解耦可拔插以最大提升了程序可扩展性的机制, 这个机制最大的优点就是无须在代码里指定,进而避免了代码污染,实现了模块的可拔插.在JDK.S…
一.广播通过Intent发送出去 // 定义广播的意图过滤器 private String action = "com.xxx.demo.Broadcast.STATUS_CHANGED"; // 发送广播 Intent intent = new Intent(); intent.setAction(action); ServiceSimulation.this.sendBroadcast(intent); 二.定义接收该广播的BroadcaseReceiver类 1.继承自andro…
MapReduce中的Shuffle 在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量. Shuffle是MapReduce框架中的一个特定的phase,介于Map phase和Reduce phase之间,当Map的输出结果要被Reduce使用时.输出结果须要按key哈希.而且分发到每个Reducer上去.这个过程就是shuffle.因为shu…
概述 1.MapReduce 中,mapper 阶段处理的数据如何传递给 reducer 阶段,是 MapReduce 框架中 最关键的一个流程,这个流程就叫 Shuffle 2.Shuffle: 数据混洗 ——(核心机制:数据分区,排序,局部聚合,缓存,拉取,再合并 排序) 3.具体来说:就是将 MapTask 输出的处理结果数据,按照 Partitioner 组件制定的规则分发 给 ReduceTask,并在分发的过程中,对数据按 key 进行了分区和排序 MapReduce的Shuffle…
一.shuffle机制 1.概述 (1)MapReduce 中, map 阶段处理的数据如何传递给 reduce 阶段,是 MapReduce 框架中最关键的一个流程,这个流程就叫 Shuffle:(2)Shuffle: 数据混洗 ——(核心机制:数据分区,排序,缓存):(3) 具体来说:就是将 maptask 输出的处理结果数据,分发给 reducetask,并在分发的过程 中,对数据按 key 进行了分区和排序:    2.主要流程 3.详细流程 (1)maptask 收集我们的 map()…
Shuffle机制 Mapreduce确保每个reducer的输入都是按键排序的.系统执行排序的过程(Map方法之后,Reduce方法之前的数据处理过程)称之为Shuffle. partition分区 Partition分区流程处于Mapper数据属于初到环形缓冲区时进行,此时会将通过Partition分区获取到的每一行key-value对应的分区值计入环形缓冲流的左. 问题引出 要求将统计结果按照条件输出到不同文件中(分区).比如:将统计结果按照手机归属地不同省份输出到不同文件中(分区) 分区…
1.Mapreduce的shuffle机制: Mapreduce中,map阶段处理的数据如何传递给Reduce阶段,是mapreduce框架中最关键的一个流程,这个流程就叫shuffle 将maptask处理后的输出结果数据,分发给reducetask,并在分发的过程中,对数据按key进行了分区和排序 MapReduce程序的执行过程分为两个阶段:Mapper阶段和Reducer阶段. 1.MapReduce的Map阶段: 1.1.从HDFS读取数据: 由FileInputFormat实现类的g…
背景 随着集群规模和负载增加,MapReduce JobTracker在内存消耗,线程模型和扩展性/可靠性/性能方面暴露出了缺点,为此需要对它进行大整修. 需求 当我们对Hadoop MapReduce框架进行改进时,需要时刻谨记的一个重要原则是用户的需求.近几年来,从Hadoop用户那里总结出MapReduce框架当前最紧迫的需求有: (1)可靠性(Reliability)– JobTracker不可靠 (2)可用性(Availability)– JobTracker可用性有问题 (3) 扩展…
在 MapReduce 框架中,作业执行受两种类型的进程控制: 一个称为 JobTracker 的主要进程,它协调在集群上运行的所有作业,分配要在 TaskTracker 上运行的 map 和 reduce 任务. 许多称为 TaskTracker 的下级进程,它们运行分配的任务并定期向 JobTracker 报告进度. Apache Hadoop 的经典版本 (MRv1) 大型的 Hadoop 集群显现出了由单个 JobTracker 导致的可伸缩性瓶颈.在集群中有 5,000 个节点和 40…