并查集与最小生成树Kruskal算法】的更多相关文章

一.什么是并查集 在计算机科学中,并查集是一种树型的数据结构,用于处理一些不交集的合并及查询问题.有一个联合-查找算法(union-find algorithm)定义了两个用于次数据结构的操作: Find:确定元素属于哪一个子集.它可以被用来确定两个元素是否属于同一子集. Union:将两个子集合并成一个集合. 二.主要操作 初始化:把每个点所在的集合初始化为其自身. for(int i=1;i<=n;i++) f[i]=i; 查找:查找元素所在的集合,即根节点. int find(int x)…
还是畅通project Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 26860    Accepted Submission(s): 11985 Problem Description 某省调查乡村交通状况,得到的统计表中列出了随意两村庄间的距离.省政府"畅通project"的目标是使全省不论什么两个村庄间都能够实现公路交…
Constructing Roads Time Limit: 2000MS   Memory Limit: 65536K               Description There are N villages, which are numbered from 1 to N, and you should build some roads such that every two villages can connect to each other. We say two village A…
[转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法,如有需要可到原文查看. Kruskal算法 1.概览 Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表.用来解决同样问题的还有Prim算法和Boruvka算法等.三种算法都是贪婪算法的应用.和Boruvka算法不同的地方是,Kruskal算法在图中存…
并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每个点只保存祖先,不保存父亲) 最小生成树kruskal:贪心算法+并查集数据结构,根据边的多少决定时间复杂度,适合于稀疏图 核心思想贪心,找到最小权值的边,判断此边连接的两个顶点是否已连接,若没连接则连接,总权值+=此边权值,已连接就舍弃继续向下寻找: 并查集数据结构程序: #include<ios…
Conscription Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14661   Accepted: 5102 Description Windy has a country, and he wants to build an army to protect his country. He has picked up N girls and M boys and wants to collect them to b…
适合对并查集有一定理解的人.  新手可能看不懂吧.... 并查集简单点说就是将相关的2个数字联系起来 比如 房子                      1   2    3   4  5   6 能通向的房子        2   3    4  5  6    1 主要 建立并查集的 函数结构 模板(一般不变除非加权--最好能理解) for(int i=0;i<n;i++)         flag[i]=i;               //标记数组初始化以方便寻根 1 int find…
题意:求一个图的最小生成树个数. 矩阵树定理:一张无向图的生成树个数 = (度数矩阵 - 邻接矩阵)的任意一个n-1主子式的值. 度数矩阵除了对角线上D[i][i]为i的度数(不计自环)外,其他位置是0. 邻接矩阵G[i][j]的值为i与j之间的边数(重边要记入). 一个定理:一个图的所有MST中,相同权值的边数肯定是相等的. 于是将边从小到大排序之后,根据权值划分阶段,将之前的点全缩点,这一阶段的边中仅考虑当前权值的边,然后把图划分成多个连通块,对每个连通块使用矩阵树定理求生成树个数,该阶段的…
kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么跳过,否则合并他们分别所在的树. #include<iostream>#include<algorithm>using namespace std; struct eg{ int s,t,c;};int v,e;int ans=0;eg E[1000];int p[1000];bool…
(先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的时候,经常把最小生成树问题和最锻炼吧问题弄混淆,最后事实证明这两个问题是存在着相似点的. 所以还是可以参照我上一篇的博客 https://www.cnblogs.com/laysfq/p/9808088.html(此处插个"广告") 最小生成树的实质问题还是求最短的路径(是吧?肯定是的!)…