Lagrange 对偶问题 定义其的对偶问题: Lagrange函数 考虑线性规划问题 若取集合约束D={x|x≥0},则该线性规划问题的Lagrange函数为 线性规划的对偶问题为: 对偶定理原问题: 对偶问题: 定理1(弱对偶定理) LP对偶问题的基本性质原问题(P) 对偶问题(D) 定理1(弱对偶定理) 定理2(最优性准则) 证明: 定理3(强对偶定理)若(P),(D)均有可行解,则(P),(D)均有最优解,且(P),(D)的最优目标函数值相等.证明:因为(P),(D)均有可行解,由推论2…
转自:七月算法社区http://ask.julyedu.com/question/276 咨询:带约束优化问题 拉格朗日 对偶问题 KKT条件 关注 | 22 ... 咨询下各位,在机器学习相关内容中,每次看到带约束优化问题,总是看到先用拉格朗日函数变成无约束问题,然后转成求拉格朗日对偶问题,然后有凸函数假设,满足KKT条件时原问题最优解和对偶问题最优解等价. 每次看到这个,总不是很理解为什么要这么做?为什么首先转为无约束问题(这个相对好理解一点,因为容易处理)为什么拉格朗日函数无约束问题要转变…
LP线性规划求解 之 单纯形 算法 认识-单纯形 核心: 顶点旋转 随机找到一个初始的基本可行解 不断沿着可行域旋转(pivot) 重复2,直到结果不能改进为止 案例-过程 以上篇的case2的松弛型为例. \(min \ y = -x1-x2\) s.t. \(50x1 + 20x2 + a1 = 2000 \\ -1.5x1+x2 + a2 =0 \\ x1-x2+a3=0 \\ x1,x2,a1,a2,a3 >=0\\ 其中a1,a2,a3为松弛变量\) 即: 基本变量(松弛): a1,…
认识LP 线性规划(Linear Programming) 特指目标函数和约束条件皆为线性的最优化问题. 目标函数: 多个变量形成的函数 约束条件: 由多个等式/不等式形成的约束条件 线性规划: 在线性约束条件下,目标函数求极值的问题 可行解: 满足线性约束条件下的解 可行域: 所有可行解构成的集合 最优解: 使目标函数取得极值的可行解 线性 个人觉得最好理解是用向量了. 就是元素满足 加法和数乘 的形式 \(f(a+b) = f(a)+f(b)\) \(f(ca) = c f(a), c为常数…
(整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) SVM有点让人头疼,但还是要弄明白.把这一大块搞懂了,会很有成就感的哦!今天先不谈SVM,先来说一下如何解决带约束的优化问题. 假设我们有如下问题需要求解: ,这是一个带有等式约束的优化问题,下面让我们用拉格朗日乘数法(THE Method of Lagrange multipliers)来解决这个 问题,首先定义拉格朗日函数: ,其中就被成为拉格朗日乘子,然后就…
在上一篇文章中,我们推导出了 SVM 的目标函数: \[ \underset{(\mathbf{w},b)}{\operatorname{min}} ||\mathbf{w}|| \\ \operatorname{s.t.} \ y_i(\mathbf{w}^T\mathbf{x_i}+b) \ge \delta, \ \ i=1,...,m \] 由于求解过程中,限制条件中的 \(\delta\) 对结果不产生影响,所以简单起见我们把 \(\delta\) 替换成 1.另外,为了之后求解的方便…
目录 相关知识点 LP线性规划问题 MIP混合整数规划 MIP的Python实现(Ortool库) assert MIP的Python实现(docplex库) 相关知识点 LP线性规划问题 Linear Problem [百度百科]:研究线性约束条件下线性目标函数的极值问题的数学理论和方法. 学过运筹学的小伙伴,可以看这个LP问题的标准型来回顾一下: 不太熟悉的朋友可以看这个例题,再结合上面的标准型,来感受一下: MIP混合整数规划 Mixed Integar Planing 混合整数规划是LP…
04-拉格朗日对偶问题和KKT条件 目录 一.拉格朗日对偶函数 二.拉格朗日对偶问题 三.强弱对偶的几何解释 四.鞍点解释 4.1 鞍点的基础定义 4.2 极大极小不等式和鞍点性质 五.最优性条件与 KKT 条件 5.1 KKT 条件 5.2 KKT 条件与凸问题 六.扰动及灵敏度分析 6.1 扰动问题 6.2 灵敏度分析 七.Reformulation 7.1 引入等式约束 7.2 显示约束与隐式约束的相互转化 7.3 转化目标函数与约束函数 凸优化从入门到放弃完整教程地址:https://w…
引自 http://my.oschina.net/wangguolongnk/blog/111349 1. 支持向量机的目的是什么? 对于用于分类的支持向量机来说,给定一个包含正例和反例(正样本点和负样本点)的样本集合,支持向量机的目的是寻找一个超平面来对样本进行分割,把样本中的正例和反例用超平面分开,但是不是简单地分看,其原则是使正例和反例之间的间隔最大. 超平面是什么呢?简单地说,超平面就是平面中的直线在高维空间中的推广.那么,对于三维空间,超平面就是平面了.对于更高维的空间,我们只能用公式…
目录 拉格朗日对偶性(Lagrange duality) 1. 从原始问题到对偶问题 2. 弱对偶与强对偶 3. KKT条件 Reference: 拉格朗日对偶性(Lagrange duality) 1. 从原始问题到对偶问题  对偶性是优化理论中一个重要的部分,带约束的优化问题是机器学习中经常遇到的问题,这类问题都可以用如下形式表达 \[ \begin{aligned} min \;\; &f(x) \\ s.t.\;\; & g_i(x) \le 0 ,\;\; i=1,\cdots,…