首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
SVM学习笔记-线性支撑向量机
】的更多相关文章
SVM学习笔记-线性支撑向量机
对于PLA算法来说,最终得到哪一条线是不一定的,取决于算法scan数据的过程. 从VC bound的角度来说,上述三条线的复杂度是一样的 Eout(w)≤Ein0+Ω(H)dvc=d+1 直观来看,最右边的线是比较好的hyperplane. 为什么最右边的分隔面最好? 对于测量误差的容忍度是最好的.例如对于每张图片中左下角的样本点,当未来要判定与该点非常接近的点(有可能它们的feature本来就是一样的,只不过因为测量的误差的存在,所以feature变得有点不同了)的labe…
统计学习方法:支撑向量机(SVM)
作者:桂. 时间:2017-05-13 21:52:14 链接:http://www.cnblogs.com/xingshansi/p/6850684.html 前言 主要记录SVM的相关知识,参考的是李航的<统计学习方法>,最后的SMO优化算法(Sequential minimal optimization)是二次规划的优化算法,不涉及整体思路的理解,这里打算跳过,以后用到了再来回顾. 一.线性可分支撑向量机 A-问题分析 不同于感知器Perceptron,SVM希望所有点到分离面的最小距…
8.支撑向量机SVM
1.什么是SVM 下面我们就来介绍一些SVM(Support Vector Machine),首先什么是SVM,它是做什么的?SVM,中文名是支撑向量机,既可以解决分类问题,也可以解决回归问题,我们来看看它的思想是怎么样的. 这是一个简单的分类问题,我们很容易想到可以找一个决策边界,那么在决策边界上方的分为红色的点.下方则分为蓝色的点.可以这个决策边界选在什么地方好呢? 可以看到图中两个蓝色的线,都可以叫做决策边界,对于这种决策边界不唯一的问题,通常叫做不适定问题.可以回想一下逻辑回归是如何解决…
走过路过不要错过 包你一文看懂支撑向量机SVM
假设我们要判断一个人是否得癌症,比如下图:红色得癌症,蓝色不得. 看一下上图,要把红色的点和蓝色的点分开,可以画出无数条直线.上图里黄色的分割更好还是绿色的分割更好呢?直觉上一看,就是绿色的线更好.对吧. 为啥呢?考虑下图,新来了一个黑色点,明显靠蓝色点更近,如果用黄线分割,却把它划分到了红色点这个类别里. 现在细想一下为什么绿线比黄线分隔效果更好? 黄色线太贴近蓝色点 绿色线到红色点群和蓝色点群距离大致相等.恰好位于两个点群中间的位置 由此我们就引申出了SVM的理论基础:使得距离决策边界最近的…
支撑向量机(SVM)
转载自http://blog.csdn.net/passball/article/details/7661887,写的很好,虽然那人也是转了别人的做了整理(最原始文章来自http://www.blogjava.net/zhenandaci/archive/2009/02/13/254519.html,分了太多篇,读起来不太方便). =============================================== 一)SVM的背景简介 支持向量机(Support Vector Mac…
SVM支撑向量机原理
转自:http://blog.csdn.net/v_july_v/article/details/7624837 目录(?)[-] 支持向量机通俗导论理解SVM的三层境界 前言 第一层了解SVM 1分类标准的起源Logistic回归 2线性分类的一个例子 3函数间隔Functional margin与几何间隔Geometrical margin 4最大间隔分类器Maximum Margin Classifier的定义 第二层深入SVM 1从线性可分到线性不可分 11从原始问题到对偶问题的求解 1…
SVM学习笔记(一)
支持向量机即Support Vector Machine,简称SVM.一听这个名字,就有眩晕的感觉.支持(Support).向量(Vector).机器(Machine),这三个毫无关联的词,硬生生地凑在了一起.从修辞的角度,这个合成词最终落脚到"Machine"上,还以为是一种牛X的机器呢?实际上,它是一种算法,是效果最好的分类算法之一. SVM是最大间隔分类器,它能很好地处理线性可分的问题,并可推广到非线性问题.实际使用的时候,还需要考虑噪音的问题. 本文只是一篇学习笔记,主要参考了…
SVM学习笔记
一.SVM概述 支持向量机(support vector machine)是一系列的监督学习算法,能用于分类.回归分析.原本的SVM是个二分类算法,通过引入“OVO”或者“OVR”可以扩展到多分类问题.其学习策略是使间隔最大化,也就是常说的基于结构风险最小化寻找最优的分割超平面.SVM学习问题可以表示为凸优化问题,也可以转变为其对偶问题,使用SMO算法求解.线性SVM与LR有很多相似的地方,分类的准确性能也差不多,当数据量比较少时SVM可能会占据优势,但是SVM不方便应用于软分类(probabi…
模式识别笔记3-支持向量机SVM
1. 线性SVM 对两类点的划分问题,这里对比下逻辑回归和SVM的区别: 逻辑回归的思想是,将所有点到决策平面的距离作为损失来进行训练,目标是到决策平面的距离和最小 SVM的思想是,只关注支持向量(图中圈出的点)到决策平面的距离,最大化这个距离. 对于所有样本点 \(\{(x_i,y_i)\}, i = 1,2,\cdots, m\) ,SVM划分正负样本,即 \(y\in\{1,-1\}\) ,则有: \[ \begin{align} \begin{cases} y_i = +1, w^Tx_…
第11章 支撑向量机SVM
Support Vector Machine , 问题:如果决策边界不唯一 , , , , , , , , s.t.(such that):之前都是全局最优化问题,这次是有条件的最优化问题 hard margin svm:首先保证能正确的分类 , soft margin SVM: , 若是这种更不行了,:因此需soft margin SVM , , , 此时称L1正则 scikit-learn中的SVM 实际使用SVM:和kNN一样,要做数据标椎化处理! 涉及距离!!! , def plo…