Python迭代器(Iterator)】的更多相关文章

一.可迭代对象定义 可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如list.tuple.dict.set.str.bytes.bytearray等: 一类是generator,包括表达式生成器和带yield的函数生成器. 这些可以直接作用于for循环的对象统称为可迭代对象:Iterable. 二.判断一个对象是否是可迭代对象 >>> from collections import Iterable >>> isinstance([], Itera…
概述 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退. 延迟计算或惰性求值 (Lazy evaluation) 迭代器不要求你事先准备好整个迭代过程中所有的元素.仅仅是在迭代至某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁.这个特点使得它特别适合用于遍历一些巨大的或是无限的集合. 可迭代对象 迭代器提供了一个统一的访问集合的接口.只要是实现了__iter__()或__getitem__()方法的对象,就…
1. 可迭代对象 from collection import Iterable class Iterable(metaclass=ABCMeta): ... def __iter__(self): # 只实现了__iter__ 方法 while False: yield None 能够在 for ... in obj:中使用的对象(obj)就是一个可迭代对象. 2. 迭代器 from collections import Iterator class Iterator(Iterable): #…
一.迭代器(iterator) 1.迭代器的概述 在Python中,for循环可以用于Python中的任何类型,包括列表.元祖等等,实际上,for循环可用于任何“可迭代对象”,这其实就是迭代器 迭代器是一个实现了迭代器协议的对象,Python中的迭代器协议就是有next方法的对象会前进到下一结果,而在一系列结果的末尾是,则会引发 StopIteration.任何这类的对象在Python中都可以用for循环或其他遍历工具迭代,迭代工具内部会在每次迭代时调用next方法,并且 捕捉StopItera…
迭代器 我们已经知道,可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如list.tuple.dict.set.str等: 一类是generator,包括生成器和带yield的generator function. 这些可以直接作用于for循环的对象统称为可迭代对象:Iterable.可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator. 注意:在Python3中,next(Iterator)实际上调用的是Iterator.__next__(),在表…
我们已经知道,可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如list.tuple.dict.set.str等: 一类是generator,包括生成器和带yield的generator function. 这些可以直接作用于for循环的对象统称为可迭代对象:Iterable. 可以使用isinstance()判断一个对象是否是Iterable对象: >>> from collections import Iterable >>> isinstanc…
三者联系 迭代器(iterator)是一个更抽象的概念,任何对象,如果它的类有next方法(next python3)和__iter__方法返回自己本身,即为迭代器 通常生成器是通过调用一个或多个yield表达式构成的函数s生成的.同时满足迭代器的定义. 生成器是一种特殊的迭代器,即生成器都是迭代器,但反过来不行. 生成器和迭代器都只能遍历一次,即对象迭代完后就不能重新迭代了. 可直接作用于for循环的数据类型: 集合数据类型,如list.tuple.dict.set.str等: generat…
1 迭代器的定义 凡是能被next()函数调用并不断返回一个值的对象均称之为迭代器(Iterator) 2 迭代器的说明 Python中的Iterator对象表示的是一个数据流,被函数next()函数调用后不断返回下一个数据,直到没有数据时抛出StopIteration错误:在存储空间中,迭代器并非全部数据,而是通过next()函数不断按需计算下一个数据,可以把Iterator看成序列,但是这个序列长度却是“未知的”,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算. 3…
在Python中,这种一边循环一边计算的机制,称为生成器:generator 要创建一个generator,有很多种方法.第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator: >>> L = [x * x for x in range(10)] >>> L [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] >>> g = (x * x for x in range(10)) >>&g…
python 生成器 & 迭代器 生成器 (generator) 列表生成式 列表生成式用来生成一个列表,虽然写的是表达式,但是储存的是计算出来的结果,因此生成的列表受到内存大小的限制 示例: a = [x ** 2 for x in range(5)] print(a) 输出结果: [0, 1, 4, 9, 16] 生成器 (generator) 生成器同样可以用来生成一个列表,但是生成器保存的是算法,在每一次调用 next 时才会计算出结果,因此生成的列表不会受到内存大小的限制 示例: a…