LTP是哈工大开源的一套中文语言处理系统,涵盖了基本功能:分词.词性标注.命名实体识别.依存句法分析.语义角色标注.语义依存分析等. [开源中文分词工具探析]系列: 开源中文分词工具探析(一):ICTCLAS (NLPIR) 开源中文分词工具探析(二):Jieba 开源中文分词工具探析(三):Ansj 开源中文分词工具探析(四):THULAC 开源中文分词工具探析(五):FNLP 开源中文分词工具探析(六):Stanford CoreNLP 开源中文分词工具探析(七):LTP 1. 前言 同TH…
Ansj是由孙健(ansjsun)开源的一个中文分词器,为ICTLAS的Java版本,也采用了Bigram + HMM分词模型(可参考我之前写的文章):在Bigram分词的基础上,识别未登录词,以提高分词准确度.虽然基本分词原理与ICTLAS的一样,但是Ansj做了一些工程上的优化,比如:用DAT高效地实现检索词典.array + linked-list方式实现分词DAG.支持自定义词典与自定义消歧义规则等. 1. 前言 Ansj支持多种分词方式,其中ToAnalysis为店长推荐款: 它在易用…
THULAC是一款相当不错的中文分词工具,准确率高.分词速度蛮快的:并且在工程上做了很多优化,比如:用DAT存储训练特征(压缩训练模型),加入了标点符号的特征(提高分词准确率)等. 1. 前言 THULAC所采用的分词模型为结构化感知器(Structured Perceptron, SP),属于两种CWS模型中的Character-Based Model,将中文分词看作为一个序列标注问题:对于字符序列\(C=c_1^n\),找出最有可能的标注序列\(Y=y_1^n\).定义score函数\(S(…
FNLP是由Fudan NLP实验室的邱锡鹏老师开源的一套Java写就的中文NLP工具包,提供诸如分词.词性标注.文本分类.依存句法分析等功能. [开源中文分词工具探析]系列: 中文分词工具探析(一):ICTCLAS (NLPIR) 中文分词工具探析(二):Jieba 中文分词工具探析(三):Ansj 开源中文分词工具探析(四):THULAC 开源中文分词工具探析(五):FNLP 1. 前言 类似于THULAC,FNLP也是采用线性模型(linear model)作为基础分词模型.与对数线性模型…
CoreNLP是由斯坦福大学开源的一套Java NLP工具,提供诸如:词性标注(part-of-speech (POS) tagger).命名实体识别(named entity recognizer (NER)).情感分析(sentiment analysis)等功能. 1. 前言 CoreNLP也有中文分词,基于CRF模型: \[ P_w(y|x) = \frac{exp \left( \sum_i w_i f_i(x,y) \right)}{Z_w(x)} \] 其中,\(Z_w(x)\)为…
CoreNLP是由斯坦福大学开源的一套Java NLP工具,提供诸如:词性标注(part-of-speech (POS) tagger).命名实体识别(named entity recognizer (NER)).情感分析(sentiment analysis)等功能. [开源中文分词工具探析]系列: 开源中文分词工具探析(一):ICTCLAS (NLPIR) 开源中文分词工具探析(二):Jieba 开源中文分词工具探析(三):Ansj 开源中文分词工具探析(四):THULAC 开源中文分词工具…
1. 前言 Jieba是由fxsjy大神开源的一款中文分词工具,一款属于工业界的分词工具--模型易用简单.代码清晰可读,推荐有志学习NLP或Python的读一下源码.与采用分词模型Bigram + HMM 的ICTCLAS 相类似,Jieba采用的是Unigram + HMM.Unigram假设每个词相互独立,则分词组合的联合概率: \begin{equation} P(c_1^n) = P(w_1^m) = \prod_i P(w_{i}) \label{eq:unigram} \end{eq…
1. 前言 ICTCLAS是张华平在2000年推出的中文分词系统,于2009年更名为NLPIR.ICTCLAS是中文分词界元老级工具了,作者开放出了free版本的源代码(1.0整理版本在此). 作者在论文[1] 中宣称ICTCLAS是基于HHMM(Hierarchical Hidden Markov Model)实现,后在论文[2]中改成了基于层叠隐马尔可夫模型CHMM(Cascaded Hidden Markov Model).我把HHMM的原论文[3]读了一遍,对照ICTCLAS源码,发现I…
做过搜索的同学都知道,分词的好坏直接决定了搜索的质量,在英文中分词比中文要简单,因为英文是一个个单词通过空格来划分每个词的,而中文都一个个句子,单独一个汉字没有任何意义,必须联系前后文字才能正确表达它的意思. 因此,中文分词技术一直是nlp领域中的一大挑战.Python 中有个比较著名的分词库是结巴分词,从易用性来说对用户是非常友好的,但是准确度不怎么好.这几天发现另外一个库,pkuseg-python,看起来应该是北大的某个学生团队弄出来的,因为这方面没看到过多的介绍,pkuseg-pytho…
IKAnalyzer 是一个开源的,基于java语言开发的轻量级的中文分词工具包. 官网: https://code.google.com/archive/p/ik-analyzer/ 本用例借助 IKAnalyzer 进行分词,通过遍历分词集合进行敏感词过滤. 使用前需对敏感词库进行初始化: SensitiveWordUtil.init(sensitiveWordSet); 1.pom.xml 引入maven依赖 <!-- https://mvnrepository.com/artifact/…