之前写了这篇文章.现在把他搬到知乎live上了.书非借不能读也,因此搞了点小费用,如果你觉得贵,加我微信我给你发红包返回给你. 最近的空余时间拿去搞kaggle了, 好久没更新文章了.今天写写kaggle首秀的一段baseline吧. 这个题目是intel的癌症预测.我之前本来是想打谷歌的视频多标签分类的,但是那个数据量大,需要用谷歌云,然后呢,需要用双币信用卡注册,结果我的双币信用卡没有开通国外账户,考虑到安全性(去年我一个同事的信用卡直接在澳大利亚被盗刷),就换成了这个比赛了. 这个比赛很简…
目录 前言 相关性分析 数据 数据特点 相关性分析 数据预处理 预测模型 Logistic回归训练模型 模型优化 前言 一般接触kaggle的入门题,已知部分乘客的年龄性别船舱等信息,预测其存活情况,二分类问题. python,所需库 机器学习scikit-learn,数据分析pandas,科学计算numpy,画图工具matplotlib,详细的指导说明 本篇大多是整理了下寒小阳的博文,按照他的思路先熟悉一下. 相关性分析 数据 数据如表所示,Pclass 等级,Sibsp 同辈亲戚人数,Par…
pandas内存优化分享 缘由 最近在做Kaggle上的wiki文章流量预测项目,这里由于个人电脑配置问题,我一直都是用的Kaggle的kernel,但是我们知道kernel的内存限制是16G,如下: 在处理数据过程中发现会超出,虽然我们都知道对于大数据的处理有诸如spark等分布式处理框架,但是依然存在下面的问题: 对于个人来说,没有足够的资源让这些框架发挥其优势: 从处理数据的库丰富程度上,还是pandas等更具有优势: 很多时候并不是pandas无法处理,只是数据未经优化: 所以这里还是考…
https://yq.aliyun.com/articles/293596 https://www.kaggle.com/c/outbrain-click-prediction https://www.kaggle.com/anokas/outbrain-eda 用户个性化点击率预估 基本场景: document_id(document) uuid(user) ad_id(a set of ads) 原始数据: page_views.csv: the log of users visiting…
1.题目 这道题目的地址在https://www.kaggle.com/c/titanic,题目要求大致是给出一部分泰坦尼克号乘船人员的信息与最后生还情况,利用这些数据,使用机器学习的算法,来分析预测另一部分人员最后是否生还.题目练习的要点是语言和数据分析的基础内容(比如python.numpy.pandas等)以及二分类算法. 数据集包含3个文件:train.csv(训练数据).test.csv(测试数据).gender_submission.csv(最后提交结果的示例,告诉大家提交的文件长什…
介绍 参加Kaggle比赛,我必须有哪些技能呢? 你有没有面对过这样的问题?最少在我大二的时候,我有过.过去我仅仅想象Kaggle比赛的困难度,我就感觉害怕.这种恐惧跟我怕水的感觉相似.怕水,让我无法参加一些游泳课程.然而,后来,我得到的教训是只要你不真的跨进水里,你就不知道水有多深.相同的哲学对Kaggle也一样适用.没有试过之前不要下结论.     Kaggle,数据科学的家园,为竞赛参与者,客户解决方案和招聘求职提供了一个全球性的平台.这是Kaggle的特殊吸引力,它提供的竞赛不仅让你站到…
编者按:Hadoop于2006年1月28日诞生,至今已有10年,它改变了企业对数据的存储.处理和分析的过程,加速了大数据的发展,形成了自己的极其火爆的技术生态圈,并受到非常广泛的应用.在2016年Hadoop十岁生日之际,InfoQ策划了一个Hadoop热点系列文章,为大家梳理Hadoop这十年的变化,技术圈的生态状况,回顾以前,激励以后.本文是Cloudera资深工程师讲解Hadoop,让您一篇文章就能了解Hadoop的过去和未来. “昔我十年前,与君始相识.” ——白居易,<酬元九对新栽竹有…
本文汇编了一些机器学习领域的框架.库以及软件(按编程语言排序). 1. C++ 1.1 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C, Python, Java 以及 MATLAB接口,并支持Windows, Linux, Android and Mac OS操作系统. 1.2 机器学习 MLPack DLib ecogg shark 2. Closure Closure Toolbox—Clojure语言库与工具的分类目录 3…
    你正在使用过时的浏览器,Amaze UI 暂不支持. 请 升级浏览器 以获得更好的体验! 深度好文丨读完此文,就知道Hadoop了! 来源:BiThink 时间:2016-04-12 15:14:39 作者:陈飚 “昔我十年前,与君始相识.” 一瞬间Hadoop也到了要初中择校的年龄了. 十年前还没有Hadoop,几年前国内IT圈里还不知道什么是Hadoop,而现在几乎所有大型企业的IT系统中有已经有了Hadoop的集群在运行了各式各样的任务. 2006年项目成立的一开始,“Hadoop…
建立模型 当使用机器学习的方法来解决问题时,比如垃圾邮件分类等,一般的步骤是这样的: 1)从一个简单的算法入手这样可以很快的实现这个算法,并且可以在交叉验证集上进行测试: 2)画学习曲线以决定是否更多的数据,更多的特征或者其他方式会有所帮助: 3)人工检查那些算法预测错误的例子(在交叉验证集上),看看能否找到一些产生错误的原因. 评估模型 首先,引入一个概念,非对称性分类.考虑癌症预测问题,y=1 代表癌症,y=0 代表没有癌症,对于一个数据集,我们建立logistic 回归模型,经过以上建模的…
Advice for applying machine learning 本周主要学习如何提升算法效率,以及如何判断学习算法在什么时候表现的很糟糕和如何debug我们的学习算法.为了让学习算法表现更好,我们还会学习如何解决处理偏态数据(skewed data). 以下内容部分参考我爱公开课-Advice for applying machine learning 一.内容概要 Evaluating a learning algorithm Deciding what to try next(决定…
1. Machine Learning definition(机器学习定义) Arthur Samuel(1959年)将机器学习非正式定义为:在不直接针对问题进行编程的情况下,赋予计算机学习能力的一个研究领域. 创造西洋棋程序,可以和自己对战. Tom Mitchell(1998年)提出一个更为正式关于机器学习的定义 :对于一个计算机程序来说:给它一个任务T和一个性能测量方法P,如果在经验E的影响下,P对T的测量结果得到了改进,那么就说改程序从E中学习. E = the experience o…
摘自: https://www.kaggle.com/zoupet/neural-network-model-for-house-prices-tensorflow 一.实现功能简介: 本文摘自Kaggle的一篇房价预测题目,找了一篇比较全的,当作自己的Tensorflow入门. 数据和题目可以在文章开头的地址找的. 主要是给定了一个区域的房子价格以及房子特征,要预测一下房价. 二.挑选数据 # 为了使得代码在 python2 或者3下都运行,加的 __future__包.如果是python3,…
现在我们要预测的是未来的房价,假设选择了回归模型,使用的损失函数是: 通过梯度下降或其它方法训练出了模型函数hθ(x),当使用hθ(x)预测新数据时,发现准确率非常低,此时如何处理? 在前面的章节中我们知道,可以选择下面的一种或几种方案: 获取更多的训练样本 选择更少的特征集 增加新的特征 增加多项式特征(x1x2, x22…) 增加正则化参数λ的值 减小正则化参数λ的值 然而遗憾的是,这些方法在不同场景下的作用不同,有时毫无作用,在选择失当的时候甚至会出现反效果.当然不能凭直觉去选择改进方法,…
建立模型 当使用机器学习的方法来解决问题时,比如垃圾邮件分类等,一般的步骤是这样的: 1)从一个简单的算法入手这样可以很快的实现这个算法,并且可以在交叉验证集上进行测试: 2)画学习曲线以决定是否更多的数据,更多的特征或者其他方式会有所帮助: 3)人工检查那些算法预测错误的例子(在交叉验证集上),看看能否找到一些产生错误的原因. 评估模型 首先,引入一个概念,非对称性分类.考虑癌症预测问题,y=1 代表癌症,y=0 代表没有癌症,对于一个数据集,我们建立logistic 回归模型,经过以上建模的…
最近参加了kaggle的walmart weekly sales 预测比赛,已经过期但还能提交获得评分.Walmart Recruiting - Store Sales Forecasting 提供的数据特征不复杂,就是商店信息.节假日信息.当地每周的气温.油价.CPI啥的.目标是预测每个商店下每个部门的周销售额. 关于提高预测精度要一步步来,每个部门的销售数据都是有周期性的.最简单的方式就是用去年的同期数据进行预测.效果实际很不错,直接就排进top 20%. 第二个想到的方法,把周日期(wee…
(1) Advice for applying machine learning Deciding what to try next 现在我们已学习了线性回归.逻辑回归.神经网络等机器学习算法,接下来我们要做的是高效地利用这些算法去解决实际问题,尽量不要把时间浪费在没有多大意义的尝试上,Advice for applying machine learning & Machinelearning system design 这两课介绍的就是在设计机器学习系统的时候,我们该怎么做? 假设我们实现了一…
Machine Learning System Design下面会讨论机器学习系统的设计.分析在设计复杂机器学习系统时将会遇到的主要问题,给出如何巧妙构造一个复杂的机器学习系统的建议.6.4 Building a Spam Classifier6.4.1 Prioritizing What to Work On首先是在设计机器学习系统时需要着重考虑什么问题.以垃圾邮件分类为例.1.确定用监督学习的方法进行学习和预测.2.确定关于邮件的特征.关于挑选特征,实际工作中,是遍历整个训练集,选出出现次数…
首先明确几个概念,精确率,召回率,准确率 精确率precision 召回率recall 准确率accuracy 以一个实际例子入手,假设我们有100个肿瘤病人. 95个良性肿瘤病人,5个恶性肿瘤病人. 我们有一个检测系统,去检测一个肿瘤病人是否为恶性. 那么,对我们的系统来说,有100个样本,5个正样本,95个负样本.假设分布为1,1,1,1,1,0,0,.......(即前5个人为恶性,后95个为良性). 假设我们的系统预测如下1,0,0,1,1,1,0.......,可以看到我们把第二个第三…
来源 | TowardsDataScience 译者 | Revolver 在我们的商业世界中,存在着许多需要对文本进行分类的情况.例如,新闻报道通常按主题进行组织; 内容或产品通常需要按类别打上标签; 根据用户在线上谈论产品或品牌时的文字内容将用户分到不同的群组...... 但是,互联网上的绝大多数文本分类文章和教程都是二文本分类,如垃圾邮件过滤(垃圾邮件与正常邮件),情感分析(正面与负面).在大多数情况下,我们的现实世界问题要复杂得多.因此,这就是我们今天要做的事情:将消费者在金融方面的投诉…
from:https://zhuanlan.zhihu.com/p/30461746 本项目需解决的问题 本项目通过利用信用卡的历史交易数据,进行机器学习,构建信用卡反欺诈预测模型,提前发现客户信用卡被盗刷的事件. 建模思路 项目背景 数据集包含由欧洲持卡人于2013年9月使用信用卡进行交的数据.此数据集显示两天内发生的交易,其中284,807笔交易中有492笔被盗刷.数据集非常不平衡,积极的类(被盗刷)占所有交易的0.172%. 它只包含作为PCA转换结果的数字输入变量.不幸的是,由于保密问题…
数字序列预测 Github地址 Kaggle地址 # -*- coding: UTF-8 -*- %matplotlib inline import pandas as pd import string import numpy as np import matplotlib.pyplot as plt from sklearn import preprocessing train = pd.read_csv('train.csv') test = pd.read_csv('test.csv')…
完整代码见kaggle kernel 或 Github 比赛页面:https://www.kaggle.com/c/house-prices-advanced-regression-techniques 这个比赛总的情况就是给你79个特征然后根据这些预测房价 (SalePrice),这其中既有离散型也有连续性特征,而且存在大量的缺失值.不过好在比赛方提供了data_description.txt这个文件,里面对各个特征的含义进行了描述,理解了其中内容后对于大部分缺失值就都能顺利插补了. 参加比赛…
原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Achieve 99% Accuracy Step 5: Model Data 数据科学是交叉学科,我们仅仅称他为计算机科学的一部分是有失公正的,它包含了数学,cs,商业管理,统计学等等方向. 机器学习被分为监督学习,无监督学习和强化学习,强化学习是前两者的混合. 算法被归为四类:分类.回归.聚类.降维,此kernel专注于分类与…
原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Achieve 99% Accuracy 问题处理之前要知道的事: 数据科学框架(A Data Science Framework) 1.定义问题(Define the Problem): 问题→需求→方法→设计→技术,这是刚开始拿到问题的解决流程,所以在我们用一些fancy的技巧和算法解决问题之前,必须要明确我们需要解决的问题到…
自从入了数据挖掘的坑,就在不停的看视频刷书,但是总觉得实在太过抽象,在结束了coursera上Andrew Ng 教授的机器学习课程还有刷完一整本集体智慧编程后更加迷茫了,所以需要一个实践项目来扎实之前所学的知识.于是就参考kaggle上的starter项目Titanic,并选取了kernel中的一篇较为祥尽的指南,从头到尾实现了一遍.因为kaggle入门赛相关方面的参考和指导非常少,因此写博给需要学习的同学做个小参考,也记录下数据挖掘的学习历程.新手上路,如果博文有误或缺失,还希望各位大神指正…
作者:大树 更新时间:01.20 email:59888745@qq.com 数据处理,机器学习 回主目录:2017 年学习记录和总结 .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { bac…
Kaggle网站流量预测任务第一名解决方案:从模型到代码详解时序预测 2017年12月13日 17:39:11 机器之心V 阅读数:5931   近日,Artur Suilin 等人发布了 Kaggle 网站流量时序预测竞赛第一名的详细解决方案.他们不仅公开了所有的实现代码,同时还详细解释了实现的模型与经验.机器之心简要介绍了他们所实现的模型与经验,更详细的代码请查看 GitHub 项目. GitHub 项目地址:https://github.com/Arturus/kaggle-web-tra…
两个预测kaggle比赛 一 .https://www.kaggle.com/c/web-traffic-time-series-forecasting/overview Arthur Suilin•(1st in this Competition)•a year ago•Options github:https://github.com/sjvasquez/web-traffic-forecasting   My model is basically RNN seq2seq (encoder+…
https://www.leiphone.com/news/201803/fPnpTdrkvUHf7uAj.html 雷锋网 AI 研习社消息,Kaggle 上 Corporación Favorita 主办的商品销量预测比赛于两个月前落下帷幕,此次比赛的奖金池共计三万美元,吸引到 1675 支队伍参赛. 近日,Private Leaderboard 上的亚军 SoLucky 团队在 arxiv 上发表了一篇论文,阐述了其获胜方案,雷锋网 AI 研习社对论文内容进行编译整理如下: 作者参加了在…