deep learning 的综述】的更多相关文章

Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢.…
从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自己是怎么一步一个逗比的走过的路的,也为了自己思维更有条理.请看客,轻拍,(如果有错,我会立马改正,谢谢大家的指正.==!其实有人看没人看都是个问题.哈哈) 推荐 tornadomeet 的博客园学习资料 http://www.cnblogs.com/tornadomeet/category/4976…
Deep Learning 方向的部分 Paper ,自用.一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 2 Statistical Language Models Based on Neural Networks Mikolov的博士论文,主要将他在RNN用在语言模型上的工作进行串联 3 Extensions of Recurrent Neural Network Language Model 开山之…
转载 http://hi.baidu.com/chb_seaok/item/6307c0d0363170e73cc2cb65 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还是CNN之类,个人只是大致分了个类.目前只整理了部分,剩余部分还会持续更新. 一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 2 Statistical…
目录 写在前面 目标检测任务与挑战 目标检测方法汇总 基础子问题 基于DCNN的特征表示 主干网络(network backbone) Methods For Improving Object Representation Context Modeling Detection Proposal Methods Other Special Issues Datasets and Performance Evaluation 博客:blog.shinelee.me | 博客园 | CSDN 写在前面…
 论文阅读:Face Recognition: From Traditional to Deep Learning Methods  <人脸识别综述:从传统方法到深度学习>     一.引言     1.探索人脸关于姿势.年龄.遮挡.光照.表情的不变性,通过特征工程人工构造feature,结合PCA.LDA.支持向量机等机器学习算法.     2.流程 人脸检测,返回人脸的bounding box 人脸对齐,用2d或3d的参考点,去对标人脸 人脸表达,embed 人脸匹配,匹配分数 二.人脸识…
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 3.2 音频 3.3 图像 3.4 多模态 4. Detailed overview 4.1 文本 4.1.1 LIWC/MRC 4.1.2 Receptiviti API 4.1.3 社交网络文本研究 4.1.4 深度神经网络应用 4.1.5 SenticNet 5 4.1.6 weighted…
目录 1.引言 2.研究方法 2.1本次综述的贡献 2.2综述方法 2.3与现有综述的比较 3.行人再识别基准数据集 3.1基于图像的再识别数据集 3.2基于视频的再识别数据集 4.基于图像的深度再识别贡献 4.1深度再识别架构 4.1.1再识别的分类模型 4.1.2再识别的验证模型 4.1.3基于Triplet的再识别模型 4.1.4基于部件的再识别模型 4.1.5基于注意力的再识别模型 4.2基于重识别挑战的方法 4.3基于模态的重识别方法 4.3.1基于可见图像的重识别方法 4.3.2跨模…
Image understanding with deep convolutional networks 直到2012年ImageNet大赛之前,卷积神经网络一直被主流机器视觉和机器学习社区所遗弃.2012年ImageNet大赛上卷积神经网络用来识别1000种分类的近100万张图片,错误率比之前大赛的最好成绩降低了近一半. 基于卷积神经网络视觉系统的表现引起了大多数技术公司的注意,包括Google.Facebook.Microsoft.IBM.Yahoo!.Twitter 和Adobe等. 许多…
Deep-Learning-Papers-Reading-Roadmap: [1] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." (2015) (Three Giants' Survey) Review 机器学习在当下有很多应用:从网络搜索的内容过滤到电商的商品推荐,以及在手持设备相机和智能手机上的应用.机器学习系统用来做图像识别,语音转换,推送符合用户兴趣的内容.这些应用逐渐地开始不仅仅使用机器学习…