1. 引言 word embedding技术如word2vec,glove等已经广泛应用于NLP,极大地推动了NLP的发展.既然词可以embedding,句子也应该可以(其实,万物皆可embedding,Embedding is All You Need ^_^).近年来(2014-2018),许多研究者在研究如何进行句子表示学习,从而获得质量较高的句子向量(sentence embedding).事实上,sentence embedding在信息检索,句子匹配,句子分类等任务上均有广泛应用,并…
无监督最近邻 NearestNeighbors (最近邻)实现了 unsupervised nearest neighbors learning(无监督的最近邻学习). 它为三种不同的最近邻算法提供统一的接口:BallTree, KDTree, 还有基于 sklearn.metrics.pairwise 的 brute-force 算法.算法的选择可通过关键字 'algorithm' 来控制, 并必须是 ['auto', 'ball_tree', 'kd_tree', 'brute'] 其中的一…
自动编码器是一种有三层的神经网络:输入层.隐藏层(编码层)和解码层.该网络的目的是重构其输入,使其隐藏层学习到该输入的良好表征. 自动编码器神经网络是一种无监督机器学习算法,其应用了反向传播,可将目标值设置成与输入值相等.自动编码器的训练目标是将输入复制到输出.在内部,它有一个描述用于表征其输入的代码的隐藏层. 自动编码器的目标是学习函数 h(x)≍x.换句话说,它要学习一个近似的恒等函数,使得输出 x^ 近似等于输入 x.自动编码器属于神经网络家族,但它们也和 PCA(主成分分析)紧密相关.…
[导读]今天,DeepMind爆出一篇重磅论文,引发学术圈热烈反响:基于最强图像生成器BigGAN,打造了BigBiGAN,在无监督表示学习和图像生成方面均实现了最先进的性能!Ian Goodfellow也称赞"太酷了!" GAN在图像合成方面一次次让人们惊叹不已! 例如,被称为史上最强图像生成器的BigGAN--许多人看到BigGAN生成的图像都要感叹"太逼真了!DeepMind太秀了吧!" BigGAN生成的逼真图像 这不是最秀的.今天,DeepMind的一篇新…
CVPR2020:三维点云无监督表示学习的全局局部双向推理 Global-Local Bidirectional Reasoning for Unsupervised Representation Learning of 3D Point Clouds 论文地址: https://openaccess.thecvf.com/content_CVPR_2020/papers/Rao_Global-Local_Bidirectional_Reasoning_for_Unsupervised_Repr…
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning b…
http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning by A…
UFLDL深度学习笔记 (三)无监督特征学习 1. 主题思路 "UFLDL 无监督特征学习"本节全称为自我学习与无监督特征学习,和前一节softmax回归很类似,所以本篇笔记会比较简化,主题思路和步骤如下: 把有标签数据分为两份,先对一份原始数据做无监督的稀疏自编码训练,获得输入层到隐藏层的最优化权值参数\(W, b\): 把另一份数据分成分成训练集与测试集,都送入该参数对应的第一层网络(去掉输出层的稀疏自编码网络): 用训练集输出的特征作为输入,训练softmax分类器: 再用此参数…
from:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning…
斯坦福Jure Leskovec图表示学习:无监督和有监督方法(附PPT下载) 2017 年 12 月 18 日  专知 专知内容组(编) 不要讲得太清楚 [导读]现实生活中的很多关系都是通过图的形式来表达的,针对图结构数据的分析的一个关键问题就是如何合理的表示图结构的低维特征表示,也即是图表示学习.斯坦福大学的Jure Leskovec是图表示学习方法node2vec和GraphSAGE作者之一,在这次演讲中他分别以这两种方法为例,详细讲解无监督和监督方法的图表示学习. ▌相关论文和代码 论文…