题意: 求区间[L, U]的正因数的个数. 分析: 有这样一条公式,将n分解为,则n的正因数的个数为 事先打好素数表,按照上面的公式统计出最大值即可. #include <cstdio> #include <cmath> ; ]; ], cnt = ; void Init() { int m = sqrt(maxn + 0.5); ; i <= m; ++i) if(!vis[i]) for(int j = i * i; j <= maxn; j += i) vis[j…
已知条件:n=p1^a1xp2^a2xp3^a3........xpk^ak;求解n的因数的个数: 求解的主要思想:递归 设所有的因数的个数为U1: 则U1会等于什么呢? 不妨设求得p2^a2xp3^a3.......xpk^ak=U2; 则我们可以这样考虑: U1包含3部分:1.只有p1的因素:共有a1种(无非是p1,p1*p1,...) 2.不包含p1: 共有U2种 3.包含p1,但不只是p1: 共有a1xU2种(对于U2中的每一种情况加乘有p1的项,就会构成新的一个因数) 也许你会有疑问,…
Description 对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m.例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6:而且是最小的有4个因子的整数. Input n(1≤n≤50000) Output m Sample Input 4 Sample Output 6 题解 这道题和[HAOI 2007]反素数ant解题思路和方法简直一毛一样... 同样我们引入这个公式: 对任一整数$a>1$,有$a={p_1}^{a_1}{p_2}^{a_2}…{p_n}^{…
题目描述 对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. 例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6:而且是最小的有4个因子的整数. 输入输出格式 输入格式: n(1≤n≤50000) 输出格式: m 输入输出样例 输入样例#1: INT.IN 4 输出样例#1: INT.OUT 6题解: 这道题和[HAOI 2007]反素数ant解题思路和方法简直一毛一样... 同样我们引入这个公式: 对任一整数a>1,有a=p1a1p2a2…pnan,其中p1<p2…
1225: [HNOI2001] 求正整数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 762  Solved: 313[Submit][Status][Discuss] Description 对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m.例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6:而且是最小的有4个因子的整数. Input n(1≤n≤50000) Output m Sample Input 4 Sa…
在n!中末尾有几个0 取决于n!中5的个数(2肯定比5多) 所以遍历从1到n的数,看总共有几个5即可 ..N do j = i; == ) ++ret; j /= ; end end 有个nb的方法: z = [N/5] + [n/(5^2)] + [n/(5^3)] + ... N/5表示不大于N的数中5的倍数的数贡献一个5,N/(5^2)表示不大于N的数中5^2的倍数的数贡献一个5 while(N) ret += N/; N /= ; end 这种可以拓展为求n!中质因数的个数  不止是5,…
// 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数 // 思路: // http://blog.csdn.net/huzecong/article/details/8478689 // M=p1^(t1)*p2^(t2)*p3^(t3).... // N=(t1+1)*(t2+1)*(t3+1)*(t4+1)... // 所以t最大到16,就可以暴力搜索了 #include <bits/stdc++.h> using namespace std; #define LL…
作者:张小二 nyoj90 ,可以使用递归的方式直接计算个数,也可以通过把满足的个数求出来计数,因为在juLy博客上看到整数划分,所以重写了这个代码,就是列出所m的可能性,提交后正确.acmer的入门: 正整数n表示成一系列正整数之和:n=n1+n2+-+nk, 其中n1≥n2≥-≥nk≥1,k≥1. 正整数n的这种表示称为正整数n的划分.求正整数n的不 同划分个数. 例如正整数6有如下11种不同的划分: 6: 5+1: 4+2,4+1+1: 3+3,3+2+1,3+1+1+1: 2+2+2,2…
15 < log250000 < 16, 所以不会选超过16个质数, 然后暴力去跑dfs, 高精度计算最后答案.. ------------------------------------------------------------------------------ #include<cstdio> #include<algorithm> #include<cstring> #include<cmath>   using namespace…
实验一 Java开发环境的熟悉(Linux + Eclipse) 实验内容 1.使用JDK编译.运行简单的Java程序: 2.使用Eclipse 编辑.编译.运行.调试Java程序. 命令行下的程序开发 进入虚拟机终端,mkdir 20155329test cd 20155329test mkdir exp1 cd exp1建立并进入实验一文件夹. 编译,运行 Java程序 使用IDEA编辑.编译.运行.调试Java程序 练习(通过命令行和Eclipse两种方式实现,自己的学号后两位与题目总数取…