摘要:本文以本人目前所做项目为基础,从设计的角度探讨数据可视化的设计的方法.过程和结果,起抛砖引玉之效.在技术方案上,我们采用通用web架构和d3js作为主要技术手段:考虑到项目需求,这里所做的可视化案例都是数据演示工具,不是数据探索工具.其中所用截图,并非最终效果图. 一.             基础说明 1.       基础技术 使用D3js绘制图形 图1,五彩斑斓的d3js D3js是应用在web开发上的开源JS组件库,是一个数据可视化工具.D3的全称是Data-Driven Docu…
1 RDD编程实战案例一 数据样例 字段说明: 其中cid中1代表手机,2代表家具,3代表服装 1.1 计算订单分类成交金额 需求:在给定的订单数据,根据订单的分类ID进行聚合,然后管理订单分类名称,统计出某一天商品各个分类的成交金额,并保存至Mysql中 (1)法一,将json数据解析出来,直接使用 object IncomeKpi { private val logger: Logger = LoggerFactory.getLogger(IncomeKpi.getClass) def ma…
​  目录 散点图 折线图 柱状图 水平柱状图 水平堆叠图 水平百分比柱状图 盒须图 饼状图 雷达图 Qt散点图.折线图.柱状图.盒须图.饼状图.雷达图开发实例. 在开发过程中我们会使用多各种各样的图,讲数据进行可视化.我们可以使用以上几种图来表达我们的数据.Qt提供了一些可视化图的库Qchart,我们可以利用他开发自己想要图表. ​编辑 散点图 散点图,顾名思义就是由一些散乱的点组成的图表,这些点在哪个位置,是由其X值和Y值确定的.所以也叫做XY散点图. 作用一:可以展示数据的分布和聚合情况.…
一.前言 目前大屏大数据可视化UI这块非常火,趁热也用Qt来实现一个,Qt这个一站式超大型GUI超市,没有什么他做不了的,大屏电子看板当然也不在话下,有了QSS和QPainter这两个无敌的工具组合,借用几个Qt高手朋友的话来说,都是分分钟.在整个系统的编写过程中,发现数学知识真的还是蛮重要的,在重要的几个算法点上,需要多次用到二元一次方程才能搞定几个算法,比如如何分组绘制柱状图. 二.文章导航 Qt编写数据可视化大屏界面电子看板1-布局方案 https://blog.csdn.net/feiy…
一.开篇 首先这里要感谢一下我的公司,因为公司需求上面的新颖(奇葩)的需求,让我有幸可以学习到一些好玩有趣的前端技术,前端技术中好玩而且比较实用的我想应该要数前端的数据可视化这一方面,目前市面上的数据可视化的框架琳琅满目,例如:D3.js.hightcharts.js.echarts.js………….由于公司对这个项目的需求是1.开发时间短,所以也就限制了D3.js的使用.2.要尽量的减少开发的成本,所以也就不能使用hightcharts.js(hightcharts是一款个人免费,商业付费的框架…
目录 前言 bokeh简介及胡扯 bokeh-scala基本代码 我的封装 总结 一.前言        最近在使用spark集群以及geotrellis框架(相关文章见http://www.cnblogs.com/shoufengwei/p/5619419.html)进行分布式空间地理系统设计(暂且夸大称之为地理信息系统),虽说是空间地理信息系统但是也少不了数据可视化方面的操作,所以就想寻找一款支持大数据的可视化框架,网上查阅半天发现bokeh不错(其实是老板直接指明方向说用这款),恰好bok…
一.echarts.js的优势与总体情况 echarts.js作为国内的IT三巨头之一的百度的推出一款相对较为成功的开源项目,总体上来说有这样的一些优点 1.容易使用 echarts.js的官方文档比较详细,而且官网中提供大量的使用示例供大家使用 2.支持按需求打包 echarts.js官网提供了在线构建的工具,可以在线构建项目时,选择项目所需要使用到的模块,从而达到减小JS文件的体积 3.开源 4.支持中国地图功能  缺陷: 1.体积较大 一个基础的echarts.js都要400K左右,相对于…
Python数据可视化编程实战(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1vAvKwCry4P4QeofW-RqZ_A 提取码:9pcd 复制这段内容后打开百度网盘手机App,操作更方便哦 内容简介  · · · · · · <Python数据可视化编程实战>是一本使用Python实现数据可视化编程的实战指南,介绍了如何使用Python最流行的库,通过60余种方法创建美观的数据可视化效果. 全书共8章,分别介绍了准备工作环境.了解数据.绘制并定制化图表.…
点击获取提取码:3l5m 内容简介 <Python数据可视化编程实战>是一本使用Python实现数据可视化编程的实战指南,介绍了如何使用Python最流行的库,通过60余种方法创建美观的数据可视化效果. 全书共8章,分别介绍了准备工作环境.了解数据.绘制并定制化图表.学习更多图表和定制化.创建3D可视化图表.用图像和地图绘制图表.使用正确的图表理解数据以及更多matplotlib知识. <Python数据可视化编程实战>适合那些对Python编程有一定基础的开发人员,可以帮助读者从…
1.从csv文件导入数据 原理:with语句打开文件并绑定到对象f.不必担心在操作完资源后去关闭数据文件,with的上下文管理器会帮助处理.然后,csv.reader()方法返回reader对象,通过该对象遍历所读取文件的所有行. #!/usr/bin/env python import csv filename = 'ch02-data.csv' data = [] try: with open(filename) as f: reader = csv.reader(f) c = 0 for…