目录 引言 动机 解决方案 概览 注释 实现 高效实现 结果 结论 参考文献 本文翻译自How Self-Attention with Relative Position Representations works, 介绍 Google的研究成果. 引言 ​ 本文基于Shaw 等人发表的论文 <Self-Attention with Relative Position Representations> 展开.论文介绍了一种在一个Transformer内部编码输入序列的位置信息的方法.特别的是,…
注意力机制之Attention Augmented Convolutional Networks 原始链接:https://www.yuque.com/lart/papers/aaconv 核心内容 We propose to augment convolutional operators with this self-attention mechanism by concatenating convolutional feature maps with a set of feature map…
前言 这一章看啥视频都不好使,啃书就完事儿了,当然了我也没有感觉自己学的特别扎实,不过好歹是有一定的了解了 注意力机制 由于之前的卷积之类的神经网络,选取卷积中最大的那个数,实际上这种行为是没有目的的,因为你不知道那个最大的数是不是你需要的,也许在哪一块你偏偏就需要一个最小的数呢?所以就有了注意了机制. 用X来表示N组输入信息,D是X的维度,Xn表示一组输入信息.为了节省计算资源不需要把所有信息都输入神经网络,只需要从X中选择一些和任务相关的信息.注意力机制的计算可以分为两步:一是在所有输入信息…
原创作者 | FLPPED 论文: Self-Attention Attribution: Interpreting Information Interactions Inside Transformer (2021 AAAI论文亚军) 地址: https://arxiv.org/pdf/2004.11207.pdf 01 研究背景 随着transformer模型的提出与不断发展,NLP领域迎来了近乎大一统的时代,绝大多数预训练方法例如BERT等都将transformer结构作为模型的框架基础,…
Multi-Head Attention多头注意力 让我们进入并了解多头注意力机制. 符号变得有点复杂,但要记住的事情基本上只是你在上一个视频中学到的自我注意机制的四个大循环. 让我们看一下每次计算自我注意力的序列时,称为头部. 因此,多头注意力这个名称指的是你是否按照上一个视频中看到的方式进行操作,但有很多次让我们来看看它是如何工作的.请记住,您通过将每个输入项乘以几个矩阵 WQ WK 和 WV 得到了每个输入项的向量 Q K 和 V.使用多头注意力,您将同一组query key 和 valu…
近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出,如单个.多个.交互式等等.去年6月,google机器翻译团队在arXiv上的<Attention is all you need>论文受到了大家广泛关注,其中,他们提出的自注意力(self-attention)机制和多头(multi-head)机制也开始成为神经网络attention的研究热点,在各个任务上也取得了不错的效果.…
来源商业新知网,原标题:深入理解BERT Transformer ,不仅仅是注意力机制 BERT是google最近提出的一个自然语言处理模型,它在许多任务 检测上表现非常好. 如:问答.自然语言推断和释义而且它是开源的.因此在社区中非常流行. 下图展示了不同模型的GLUE基准测试分数(不同NLP评估任务的平均得分)变化过程. 尽管目前还不清楚是否所有的GLUE任务都非常有意义,但是基于Trandformer编码器的通用模型(Open-GPT.BERT.BigBird),在一年内缩小了任务专用模型…
在cognos开发利用transform建模的过程中导入iqd数据源预览乱码问题,下面先描述一下环境 操作系统版本: [root@enfo212 ~]# cat /proc/version Linux version 2.6.39-200.24.1.el6uek.i686 (mockbuild@ca-build44.us.oracle.com) (gcc version 4.4.6 20110731 (Red Hat 4.4.6-3) (GCC) ) #1 SMP Sat Jun 23 02:3…
​前言  在计算机视觉中,相对位置编码的有效性还没有得到很好的研究,甚至仍然存在争议,本文分析了相对位置编码中的几个关键因素,提出了一种新的针对2D图像的相对位置编码方法,称为图像RPE(IRPE). 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 代码:https://github.com/microsoft/Cream/tree/main/iRPE Background Transformer的核心是self-…
'gc cr multi block request' 是RAC数据库上比较常见的一种等待事件,在RAC 上进行全表扫描(Full Table Scan)或者全索引扫描(Index Fast Full Scan)时,容易产生这样的多块读等待. 这种等待产生的主要原因:1. 数据库参数db_file_multiblock_read或者db_block_size设置太大,导致多块读时GC传输量太大:2. OS上UDP相关的参数设置不够大导致接收发送UDP的缓存区溢出:3. 私网性能:4. LMS设置…