P2473 [SCOI2008]奖励关】的更多相关文章

题目链接:P2473 [SCOI2008]奖励关 题意:有n个宝物 每次等概率抛出其中之一一共抛出k次每个宝物有一个价值 和一个前提集合只有集齐了集合中的所有宝物 才可以领取这个宝物 范围:1 <= k <= 100, 1 <= n <= 15,分值为[-106,106]内的整数   这个范围长得很dp呀这个n长得很状压啊   最初想法:对于负价值宝物我们计算它本身的贡献与它带来的期望贡献来判定是否可取对每一个宝物记录它自己的贡献最后求和   正解:逆向状压 2 ^ 15 = 32…
P2473 [SCOI2008]奖励关 $n<=15$,显然的状压 设$f[i][w]$表示前$i$轮,状态$w$的最大期望 蓝后我们发现一个问题:$f[i][w]$可能是非法的 于是我们从$f[i][w]$转移到$f[i][w|(1<<j)]$时可能会GG 那咋办鸭 试试逆推 设$f[i][w]$表示第$i -> k$轮,状态$w$的最大期望 从后往前推,就可以判断掉非法操作 合法时$f[i][w]+=max(f[i+1][w],f[i+1][w|(1<<(j-1))…
P2473 [SCOI2008]奖励关 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出\(k\)次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有\(n\)种,系统每次抛出这\(n\)种宝物的概率都相同且相互独立.也就是说,即使前\(k-1\)次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第\(k\)次抛出各个宝物的概率依然均为\(1/n\). 获取第\(i\)…
比较恶心的概率(期望)+状压DP,想正推2H的我瑟瑟发抖 由于数据范围不大,因此我们可以直接状压每个宝物取或不取的情况,设\(f_{i,j}\)表示前\(i\)轮且宝物是否取过的状态为\(j\)时的方案总数,但是我们发现这样可能会导致一些不合法的状态也得到转移,因此我们考虑倒推 用\(f_{i,j}\)表示表示在第\(1\)轮到第\(i-1\)轮内宝物是否取过的状态为\(j\),第\(i\)轮到第\(k\)轮的最大期望得分,那么这样就可以通过倒推进行转移了. 具体转移的时候我们枚举所有的宝物限制…
思路 n<=15,所以状压 因为求期望,所以采用逆推的思路,设\(f[i][S]\)表示1~i的宝物获得情况是S,i+1~k的期望 状态转移是当k可以取时,\(f[i][S]+=max(f[i+1][S|(1<<(k-1))]+val[k],f[i+1][S])\) k不可以取得时候,\(f[i][S]+=f[i+1][S]\) 这样一层转移完后,相当于\(f[i][S]\)有了取每种物品的最优取值,再除以n即可 代码 #include <cstdio> #include &…
题面 luogu 题解 \(n \leq 15\) 状压 \(f[i][S]\)表示第\(i\)轮,吃过的集合为\(S\) 正着转移好像有点复杂 考虑逆推转移(正着转移应该也行) \(f[i][S]\)表示\([1,i-1]\)轮,吃过的集合为\(S\),第\(i\)轮到第\(k\)轮最大期望得分 Code #include<bits/stdc++.h> #define LL long long #define RG register const int N = 16; using names…
传送门 我数学期望还是太差了…… 先考虑状压模型,设$dp[i][S]$表示第$i$轮,当前宝物状态为$S$,能获得的最大期望分数 然而这个模型有一个问题,第$i$轮不一定能达到状态$S$ 那么考虑转化一下,$dp[i][S]$表示第$1$至$i-1$轮的宝物状态为$S$,第$i$至$n$轮的期望分数 那么我们就可以倒推了 那么对于第$k$个宝物,可以分为两种情况 1.可以选,那么此时可以选择选或者不选,则$dp[i][S]+=max\{dp[i+1][S],dp[i+1][S|(1<<k-1…
题目链接 题意 : 中文题.点链接 分析 : 第一道有关概率期望的DP 有个大部分情况下通用的结论 概率正推.期望反推 原因不明.其实是没有查到较好的解释 这题由于有一些取物品的先决条件在这里 而且观察到题目 n 并不是很大 果断选择状压来解决 这题定义 dp[i][j] 到第 i 回合.拿过物品状态为 j 的情况的最优值是什么 转移的时候.第一维倒序枚举回合.第二维枚举状态.然后第三维枚举每个物品 如果当前状态包含了当前枚举到的物品的先决物品的话 则有转移 dp[i][j] += max( d…
P2473 [SCOI2008]奖励关 题目背景 08四川NOI省选 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立.也就是说,即使前k-1 次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n. 获取第 i 种宝物将得到Pi分,…
[BZOJ1076][SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立.也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n. 获取第i种宝物将得到Pi分,但并不是每种宝…
期望状压dp.... ------------------------------------------------------------------ #include<cstdio> #include<cstdlib> #include<cstring> #include<algorithm> #include<iostream>   #define clr( x , c ) memset( x , c , sizeof( x ) ) #d…
BZOJ_1076_[SCOI2008]奖励关_状压DP 题意: 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃).  宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立.也就是说,即使前k-1次系统都抛出宝物1( 这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n. 获取第i种宝物将得到Pi 分,但并不是每种…
1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 3074  Solved: 1599 [Submit][Status][Discuss] Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃).  宝物一共有n种,系统每次抛出这n种宝物的概率都…
1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3070  Solved: 1595[Submit][Status][Discuss] Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相…
1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2078  Solved: 1118[Submit][Status][Discuss] Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相…
1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2989  Solved: 1557[Submit][Status][Discuss] Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相…
http://www.lydsy.com/JudgeOnline/problem.php?id=1076 https://www.luogu.org/problemnew/show/P2473 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立.也就是说,即使前k-1 次系统都抛出宝物1(这…
Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1935  Solved: 1053 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立.也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小)…
题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立.也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n. 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的.第i种宝物有一个前提宝物集合Si.只有当…
http://www.lydsy.com/JudgeOnline/problem.php?id=1076 有时候人蠢还真是蠢.一开始我看不懂期望啊..白书上其实讲得很详细的,什么全概率,全期望(这个压根没说). 还是看了论文才知道全期望这个东西.. 意思很明白,就是说Y的期望等于 所有 可能的情况的期望值乘上得到这个期望值的概率 的和. 很难懂吗...慢慢想. 首先你得知道期望是 之中某个事件的概率×这个事件的贡献 之和. 而且这些事件相互独立. 那么这里求全期望也就是 “这个事件的贡献” 那里…