Deep Deterministic Policy Gradients in TensorFlow AUG 21, 2016 This blog from: http://pemami4911.github.io/blog/2016/08/21/ddpg-rl.html Introduction Deep Reinforcement Learning has recently gained a lot of traction in the machine learning commu…
Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. The papers are organized based on manually-defined bookmarks. They are sorted by time to see the recent papers first. Any suggestions and pull requests…
强化学习与监督学习的区别在于,监督学习的每条样本都有一个独立的label,而强化学习的奖励(label)是有延后性,往往需要等这个回合结束才知道输赢 Policy Gradients(PG)计算某个状态下所有策略的分布概率,类似于经典分类问题给每个类别预测一个概率,好的PG应该给优良的策略分配较高的概率 PG基于以下假定: 如果只在游戏终结时才有奖励和惩罚,该回合赢了,这个回合的所有样本都是有""偏正的",反之则该回合所有样本都是“偏负的” 距离赢的那刻越近,贡献越大,越远贡…
Ahmet Taspinar Home About Contact Building Convolutional Neural Networks with Tensorflow Posted on augustus 15, 2017 adminPosted in convolutional neural networks, deep learning, tensorflow 1. Introduction In the past I have mostly written about ‘clas…
Policy-Based methods 在上篇文章中介绍的Deep Q-Learning算法属于基于价值(Value-Based)的方法,即估计最优的action-value function $q_*(s,a)$,再从$q_*(s,a)$中导出最优的策略$\pi_*$(e.g., $\epsilon$-greedy).但是有没有方法能不经过中间过程,直接对最优策略进行估计呢?这样做又有什么好处呢?该部分要介绍的就是这类方法,即基于策略(Policy-Based)的方法.下面先介绍一下这类方法…
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these models, we use a bunch of tricks to train th…
在之前的强化学习文章里,我们讲到了经典的MDP模型来描述强化学习,其解法包括value iteration和policy iteration,这类经典解法基于已知的转移概率矩阵P,而在实际应用中,我们很难具体知道转移概率P.伴随着这类问题的产生,Q-Learning通过迭代来更新Q表拟合实际的转移概率矩阵 P,实现了强化学习在大多数实际场景中的应用.但是,在很多情况下,诸多场景下的环境状态比较复杂,有着极大甚至无穷的状态空间,维护这一类问题的Q表使得计算代价变得很高,这时就有了通过Deep网络来…
Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from Pixels May 31, 2016 This is a long overdue blog post on Reinforcement Learning (RL). RL is hot! You may have noticed that computers can now automatica…
这是一篇迟来很久的关于增强学习(Reinforcement Learning, RL)博文.增强学习最近非常火!你一定有所了解,现在的计算机能不但能够被全自动地训练去玩儿ATARI(译注:一种游戏机)游戏(直接输入游戏的原生的像素数据),还能击败围棋的世界冠军.模拟四足动物上蹿下跳.机器人还能学习如何进行复杂的控制任务,甚至比直接编写的程序效果还要好.这些在各个方面的领先都应该被归功于增强学习遍地开花般的研究.我本人在过去几年中也对增强学习非常感兴趣:我完成了Richard Sutton的书,看…
Policy Gradient Algorithms 2019-10-02 17:37:47 This blog is from: https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html Abstract: In this post, we are going to look deep into policy gradient, why it works, and many new polic…