MXNET:丢弃法】的更多相关文章

除了前面介绍的权重衰减以外,深度学习模型常常使用丢弃法(dropout)来应对过拟合问题. 方法与原理 为了确保测试模型的确定性,丢弃法的使用只发生在训练模型时,并非测试模型时.当神经网络中的某一层使用丢弃法时,该层的神经元将有一定概率被丢弃掉. 设丢弃概率为 \(p\).具体来说,该层任一神经元在应用激活函数后,有 \(p\) 的概率自乘 0,有 \(1−p\) 的概率自除以 \(1−p\) 做拉伸.丢弃概率是丢弃法的超参数. 多层感知机中,隐层节点的输出: \[h_i = \phi(x_1…
下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) 模型选择 验证数据集(validation data set),又叫验证集(validation set),指用于模型选择的在train set和test set之外预留的一小部分数据集 若训练数据不够时,预留验证集也是一种luxury.常采用的方法为K折交叉验证.原理为:把train set分割成k个不重合…
丢弃法是一种降低过拟合的方法,具体过程是在神经网络传播的过程中,随机"沉默"一些节点.这个行为让模型过度贴合训练集的难度更高. 添加丢弃层后,训练速度明显上升,在同样的轮数下测试集的精度提高.如果不加入丢弃层,练习一百多轮也只有0.90左右的测试集正确率.…
多层感知机中: hi 以 p 的概率被丢弃,以 1-p 的概率被拉伸,除以  1 - p import mxnet as mx import sys import os import time import gluonbook as gb from mxnet import autograd,init from mxnet import nd,gluon from mxnet.gluon import data as gdata,nn from mxnet.gluon import loss a…
介绍过去几年中数个在 ImageNet 竞赛(一个著名的计算机视觉竞赛)取得优异成绩的深度卷积神经网络. LeNet LeNet 证明了通过梯度下降训练卷积神经网络可以达到手写数字识别的最先进的结果.这个奠基性的工作第一次将卷积神经网络推上舞台,为世人所知. net = nn.Sequential() net.add( nn.Conv2D(channels=6, kernel_size=5, activation='sigmoid'), nn.MaxPool2D(pool_size=2, str…
https://blog.csdn.net/lizzy05/article/details/80162060 from mxnet import nd def dropout(X, drop_probability): keep_probability = 1 - drop_probability assert 0 <= keep_probability <= 1 # 这种情况下把全部元素都丢弃. if keep_probability == 0: return X.zeros_like()…
训练误差和泛化误差 需要区分训练误差(training error)和泛化误差(generalization error).前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似.计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函数. 直观地解释训练误差和泛化误差这两个概念.训练误差可以认为是做往年高考试题(训练题)时的错误率,泛化误差则可以通过真正参加高…
深度卷积神经网络(AlexNet) 在LeNet提出后的将近20年里,神经网络一度被其他机器学习方法超越,如支持向量机.虽然LeNet可以在早期的小数据集上取得好的成绩,但是在更大的真实数据集上的表现并不尽如人意.一方面,神经网络计算复杂.虽然20世纪90年代也有过一些针对神经网络的加速硬件,但并没有像之后GPU那样大量普及.因此,训练一个多通道.多层和有大量参数的卷积神经网络在当年很难完成.另一方面,当年研究者还没有大量深入研究参数初始化和非凸优化算法等诸多领域,导致复杂的神经网络的训练通常较…
本文参考http://blog.csdn.net/zdy0_2004/article/details/43896015译文以及原文file:///F:/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/Recommending%20music%20on%20Spotify%20with%20deep%20learning%20%E2%80%93%20Sander%20Dieleman.html 本文是比利时根特大学(Ghent University)的Reservoir …
0.开始训练之前先要做些什么? 在开始调参之前,需要确定方向,所谓方向就是确定了之后,在调参过程中不再更改 1.根据任务需求,结合数据,确定网络结构. 例如对于RNN而言,你的数据是变长还是非变长:输入输出对应关系是many2one还是many2many等等,更多结构参考如下 非RNN的普通过程,从固定尺寸的输入到固定尺寸的输出(比如图像分类)输出是序列(例如图像标注:输入是一张图像,输出是单词的序列)输入是序列(例如情绪分析:输入是一个句子,输出是对句子属于正面还是负面情绪的分类)输入输出都是…