青蛙跳N阶(变态跳)】的更多相关文章

https://www.nowcoder.com/questionTerminal/22243d016f6b47f2a6928b4313c85387 描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 解析 关于本题,前提是n个台阶会有一次n阶的跳法.分析如下: f(1) = 1 f(2) = f(2-1) + f(2-2)         //f(2-2) 表示2阶一次跳2阶的次数. f(3) = f(3-1) + f(3-2)…
题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有两种跳法 已知当n>2时,当最后一次跳1级台阶,则之前有f(n-1)种跳法,当最后一次跳2级台阶时,之前有f(n-2)种跳法,即f(n)=f(n-1)+f(n-2); 故此处采用递归的方法 递归(英语:recursion)在计算机科学中是指一种通过重复将问题分解为同类的子问题而解决问题的方法. publ…
题目:斐波那契数列 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). f(n) = f(n-1) + f(n-2) 基本思路 这道题在剑指offer中实际是当作递归的反例来说的. 递归的本质是吧一个问题分解成两个或者多个小问题,如果多个小问题存在互相重叠的情况,那么就存在重复计算. f(n) = f(n-1) + f(n-2) 这种拆分使用递归是典型的存在重叠的情况,所以会造成非常多的重复计算. 另外,每一次函数调用爱内存中都需要分配空间,每…
首先说一个剪枝的概念: 剪枝出现在递归和类递归程序里,因为递归操作用图来表示就是一棵树,树有很多分叉,如果不作处理,就有很多重复分叉,会降低效率,如果能把这些分叉先行记录下来,就可以大大提升效率——这就是剪枝技巧.他的做法和动规很像(将状态保存起来,用空间换时间),就是在递归的过程中把出现的状态存储下来 具体见代码: source code(跳台阶): package niuke; public class 跳台阶 { public static int Solution1(int i,int…
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. java版本: public class Solution { public static void main(String[] args){ long startTime=System.currentTimeMillis(); System.out.println("第4项的结果是:"+JumpFloorII(4)); long endTime=System.current…
前两天面试遇到的一个题,当时没有想清楚,今天想了一下,po出来: # -*-encoding:utf-8-*- import sys end = 0 # 终点 cnt = 0 # 统计组合方式 def jump(start): global cnt for i in [1,2]: cur = str(start)+"+"+str(i) if eval(cur) >= end: print cur cnt += 1 continue jump(cur) def main(n): &…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 编程思想 因为n级台阶,第一步有n种跳法:跳1级.跳2级.到跳n级跳1级,剩下n-1级,则剩下跳法是f(n-1)跳2级,剩下n-2级,则剩下跳法是f(n-2)所以f(n)=f(n-1)+f(n-2)+...+f(1)因为f(n-1)=f(n-2)+f(n-3)+...+f(1)所以f(n)=2*f(n-1)=2^(n-1) 编程实现 class Solution { publ…
变态跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 实现代码 function jumpFloor(number) { if (number<0){ return -1; }else if(number <=2){ return number } var arr = []; arr[0] = 1; arr[1] = 1; for(var i = 2; i <= number; i++) { arr[i] =…
题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1: 当n = 1 时. 仅仅有一种跳法,即1阶跳,即Fib(1) = 1; 当n = 2 时. 有两种跳的方式,一阶跳和二阶跳,即Fib(2) = Fib(1) + Fib(0) = 2; 当n = 3 时.有三种跳的方式,第一次跳出一阶台阶后,后面还有Fib(3-1)中跳法,第一次跳出二阶台阶后.…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 问题分析 由于每次跳的阶数不确定,没有一个固定的规律,但是可以了解的是后一次跳是在前一次跳的结果上累加的,因此我们可以考虑使用递归的方法来解决问题. 那么从递归的三个步骤开始寻找解决方案: 1. 递归截止条件. 由于每次可以跳1-n的任意阶数,因此无论有多少阶,都可以一次跳完,为了表示方便,我们将一次性跳完的情况设为F(0),当n=1时,只能有一种情况,F(1) = 1.当n…