bzoj 2013 上升计数】的更多相关文章

题意: 给一个数集和一个数d,问满足下列要求的排列数(相同的数要区分):  a[i]+d>=a[i+1] ( i in [1,n) ) 因为数的给出顺序不重要,所以先排序,假如我们已经解决了前i个数的答案,考虑前i+1个数,即我们可以将第i+1个数放在哪,然后发现对于前i个数的每一种方案,我们都可以选择将第i+1个数放在大于等于它-d的数的上面,从而形成一种新的方案(当然直接可以放在地上),然后就完了. 收获: 1. 对于不重要的东西(如原序列的顺序),可以直接舍弃 2. 减小问题规模,发现小规…
BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为\(K\),求取法的方案数,答案模\(1000000007\). Input 一行两个整数\(N,K\) Output 一行为答案. HINK 对于\(100\%\)的数据,\(1≤N≤1000000,0≤K≤N\): 设交集拥有元素集合\(S\)的取法方案数为\(f(S)\),有 \[…
2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = 任意选的方案数-交集\ge 1 的方案数+交集\ge 2的方案数-... \] 交集\(\ge i\)就是说先选出i个元素在交集里,剩下的元素的集合任选 那么就是 \[ \sum_{i=0}^n \binom{n}{i}(2^{2^{n-i}}-1) \] 组合数直接推阶乘和逆元 后面的\(2^{…
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7429  Solved: 3098[Submit][Status][Discuss] Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的…
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1727  Solved: 1067 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7 取模. Input 第一行一个数 T,表示有 T 组数据. 接下来…
[HAOI2010]计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 451  Solved: 289[Submit][Status][Discuss] Description 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等. 现在给定一个数,问在这个数之前有多少个数.(注意这个数不会有前导0).   I…
Link: BZOJ 1833 传送门 Solution: 比较明显的数位DP 先预处理出1~9和包括前导0的0的个数:$pre[i]=pre[i-1]*10+10^{digit-1}$ (可以分为首位和其它位来考虑问题) 求$(L,R)$的个数,可以用$(1,R)-(1,L-1)$差分来做 在求$(1,K)$时,我们先根据预处理的值算出$[0,999....99]$的值(不受边界影响) 接下来从最高位开始尽可能增加$10^n$,直到达到边界后再开始增加$10^{n-1}$ 每次对于前面已确定的…
2013: [Ceoi2010]A huge tower Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 471  Solved: 321[Submit][Status][Discuss] Description 有N(2<=N<=620000)快砖,要搭一个N层的塔,要求:如果砖A在砖B上面,那么A不能比B的长度+D要长.问有几种方法,输出 答案 mod 1000000009的值 Input 第一行: N,D 第二行: N个数,表示每块砖的长度…
2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 495  Solved: 271[Submit][Status][Discuss] Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Inp…
http://www.lydsy.com/JudgeOnline/problem.php?id=2013 最初看这个题的时候,以为神题不可做,然后去找yzjc..然后做法过于简单了(' '      ) 先排个序.假设我们已经将前i个砖块有一个合法的方案,那么加入第i + 1个砖块的时候可加入的位置都是一定的,都为在1 ~ i 中 > l[i +1] - D 的砖块的个数,因为插在中间的时候由于保证了所有已经加入的砖块的长度都小于i + 1块,所以只和上一块有关,所以只要满足上面那个式子就可以了…
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点:求出某个集合恰好为k的个数. 转换:求出集合>=k的个数或者<=k的个数 从而使用广义容斥容斥出来答案. 关于>=k个数 如上图可见 又很多重复的地方 而广义容斥也是在这么多重复的地方使用的 而并非严格>=k的个数. 换个说法 >=k的方案数 可能有一些存在重复 但是其特点是&g…
f[i]=f[l]*f[r]*C(size[l]+size[r],size[l]). 需要lucas. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #define maxn 1000050 using namespace std; long long n,mod,inv1[maxn],inv2[maxn],f[maxn],size[maxn]; long…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1494 题意: 思路: int SIZE; struct matrix { i64 a[N][N]; void init(int x) { clr(a,0); if(x) { int i; FOR0(i,SIZE) a[i][i]=1; } } matrix operator*(matrix p) { matrix ans; ans.init(0); int i,j,k; FOR0(k,S…
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m行,每行包含两个整数:a, b, c,表示节点a…
Description SD有一名神犇叫做Oxer,他觉得字符串的题目都太水了,于是便出了一道题来虐蒟蒻yts1999. 他给出了一个字符串T,字符串T中有且仅有4种字符 'A', 'B', 'C', 'D'.现在他要求蒟蒻yts1999构造一个新的字符串S,构造的方法是:进行多次操作,每一次操作选择T的一个子串,将其加入S的末尾. 对于一个可构造出的字符串S,可能有多种构造方案,Oxer定义构造字符串S所需的操作次数为所有构造方案中操作次数的最小值. Oxer想知道对于给定的正整数N和字符串T…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎么求出这个数组呢?考虑先确定 k个元素(有C(N,k)种方法),那么还剩下 N-k个元素,这剩下的 N-k个元素可以得到 2^(N-k)个集合,然后每个集合可以选或不选,(但不能一个都不选),可以得到 2^(2^(N-k))-1 种选法,每种选法里面的每个集合都加上那以及固定的 k个元素,可以发现这…
题目链接 做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来..... 想深入了解下数位DP的请点这里 先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数 有  数位dp的题一般都会用到前缀数组,题目要求我们求b-a这个区间里各个数码出现的次数,我们可以分别求出(0,b)和(0,a-1)然后相减即可 具体分析请看代码,写的还算详细 #include <bits/stdc++.h> using namespace std; typedef long lo…
题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设S="ABCD",T有子串"A","AB","CD","BCD",那么步数最小方案是选"AB"再接上"CD",而不是提前断开选择"A"+"B…
Description 题库链接 有 \(2^n\) 个集合,每个集合只包含 \([1,n]\) ,且这些集合两两不同.问有多少种选择方法(至少选一个),使得这些集合交集大小为 \(k\) . \(0\leq k\leq n\leq 1000000\) Solution 设 \(f(n)\) 为交集元素大于 \(k\) 的方案数,设 \(g(n)\) 为交集元素等于 \(k\) 的方案数. 容易得到 \[f(k)=\sum_{i=k}^n{i\choose k}g(i)\Rightarrow g…
因为要在n个里面选k个,所以我们先枚举选的是哪$k$个,方案数为$C_{n}^k$ 确定选哪k个之后就需要算出集合交集正为好这$k$个的方案数,考虑用容斥原理. 我们还剩下$n-k$个元素,交集至少为$k$的方案数为$2^{2^{n-k}}$. 相当于在仅有剩下$n-k$个元素的集合里随便选,最后再往每个集合里塞进这$k$个元素. 然后就是很简单的容斥了. 减去交集至少为k加上其他一个元素的方案数,加上交集至少为k加上其他两个元素的方案数... $$ans=C_{n}^k\times(2^{2^…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i 个,则 \( g(i)=C_{n}^{i}*(2^{2^{n-i}}-1) \) \( g(i)=\sum\limits_{j=i}^{n}C_{j}^{i}f(j) \) \( f(i)=\sum\limits_{j=i}^{n}(-1)^{j-i}C_{j}^{i}g(j) \) 以为把 g 写…
题目 真是一道好题 首先根据一个非常显然的贪心,如果给出了一个串\(S\),我们如何算最小操作次数呢 非常简单,我们直接把\(S\)拉到\(T\)的\(SAM\)上去跑,如果跑不动了就停下来,重新回到\(1\)继续跑 于是我们建出一个\(SAM\)之后可以写一个这样的暴力,设\(d[i][j][k]\)表示从\(i\)点到\(j\)点走\(i\)条边的最长路,对于那些走不动的边,我们可以接到\(1\)号节点对应的出边上去,边权为\(1\),其余的边权为\(0\),矩阵优化一下就是\(O(|T|^…
正难则反 前面定后面就定->枚举开头 /************************************************************** Problem: 1008 User: idy002 Language: C++ Result: Accepted Time:0 ms Memory:804 kb ****************************************************************/ #include <cstdio&g…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2425 题意: 给你一个数字n,长度不超过50. 你可以将这个数字: (1)去掉若干个0 (2)打乱后重新排列 问你可以产生多少个小于n的数字. 题解: 题目中的第一个操作其实是没有用的. 去掉若干个0之后再重新排列(不允许前导0),和不去0直接重新排列(允许前导0),其实是等价的. 所以按照数位dp的方法从高到低按位统计. 如n = 2345时,分别统计前缀为0~1, 20~22, 23…
题目: 有\(N(2\leq N\leq 620000)\)块砖,要搭一个\(N\)层的塔,要求:如果砖\(A\)在砖\(B\)上面,那么\(A\)不能比\(B\)的长度\(+D\)要长.问有几种方法,输出 答案\(\mod 10^9+9\)的值 题解: 考虑从大到小插入砖块. 可以发现只要满足插入时该砖块与下面的砖块满足条件那么与上面的砖块也满足条件. 也就是说我们只用在乎下砖块是哪个. 所以枚举插入到哪个砖块上面就好了. 可以排序后直接搞. #include <cstdio> #inclu…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( f(i) \) 为至少 \( i \) 个选择,则 \( f(i) = C_{n}^{i} * (2^{2^{n-i}} - 1) \),因为其他可选可不选: 设 \( g(i) \) 为恰好 \( i \) 个选择,则 \( f(i) = \sum\limits_{j=i}^{n} g(j) * C_{j}^{i} \) 感觉形式不是一般那种,所以想换一下,设 \( f(…
坑了好多天的题,终于补上了 首先发现 \(i\) 这个点和 \(i-k\) 之前的点没有边,所以 \(i-k\) 之前的点肯定联通,只要处理中间 \(k\) 个点的联通状态就好了.我们用最小表示法,\(f[i]\) 表示最小的与 \(i\) 联通的点编号,发现状态最多有52种,然后枚举下一个点与那些点之间连边,得到转移方程,矩阵快速幂优化转移即可 (反正怎么说估计都听不懂,还是贴代码比较靠谱) #include<stdio.h> #include<cstring> #include…
首先,考虑容斥,我们所要的答案是并集至少有\( k \)个数的方案数减去并集至少有\( k+1 \)个数的方案数加上并集至少有\( k \)个数的方案数-- 在n个数中选i个的方案数是\( C_{n}^{i} \),n种集合的组合方案数为\( 2^n \) 并集至少有i个元素的方案数即为选\( i \)个元素的方案数\( C_{n}^{i} \),乘上剩下\( n-i \)个元素任意组合的方案数\( 2^{2^{n-i}-1} \) 然后乘上容斥系数\( (-1)^{i-k} \),再乘上在并集…
[题解] 对于不同的最小生成树,每种权值的边使用的数量是一定的,每种权值的边的作用是确定的 我们可以先做一遍Kruskal,求出每种权值的边的使用数量num 再对于每种权值的边,2^num搜索出合法使用方案,把每种权值的边的方案用乘法原理乘起来就是答案了 #include<cstdio> #include<algorithm> using namespace std; ,Mod=; ,cnt,st[maxn],fa[maxn],num[maxn]; struct edge{int…
我们把边从小到大排序,然后依次插入一种权值的边,然后把每一个联通块合并. 然后当一次插入的边不止一条时做矩阵树定理就行了.算出有多少种生成树就行了. 剩下的交给乘法原理. 实现一不小心就会让程序变得很丑 #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<algorithm> using namespace std; #define int…