BZOJ 3689: 异或之 可持久化trie+堆】的更多相关文章

和超级钢琴几乎是同一道题吧... code: #include <bits/stdc++.h> #define N 200006 #define ll long long #define setIO(s) freopen(s".in","r",stdin) , freopen(s".out","w",stdout) using namespace std; char buf[100000],*p1,*p2; #de…
题目大意:给你一个序列,求出第$K$大的两两异或值 先建出来可持久化$01Trie$ 用一个$set$/堆存结构体,存某个异或对$<i,j>$的第二关键字$j$,以及$ai\;xor\;aj$的值,堆中按异或值从小到大排序 每次取出一对$<i,j>$并把它从堆中删除 在$[0,j-1]$的 可持久化$01Trie$ 中把$a_{i}$这个数删除 再查询$[0,j-1]$中和$a_{j}$的异或最大值,重新推入堆中... 反复操作$K$次即可 删除操作中的细节比较多 #include…
LOJ 洛谷 考场上都拍上了,8:50才发现我读错了题=-= 两天都读错题...醉惹... \(Solution1\) 先求一遍前缀异或和. 假设左端点是\(i\),那么我们要在\([i,n]\)中找一个\(sum_j\)使得它和\(sum_{i-1}\)异或最大.可以可持久化Trie. 对\(i\in[1,n]\)都求一遍它能得到的最大的异或值,扔到堆里. 每次从堆里找出值最大的,假设是\(x\),与\(sum_{x-1}\)异或得到最大值的数是\(sum_y\),那么之后就不能选\(sum_…
和超级钢琴,异或之三倍经验 $?$ 堆+贪心素质三连 $?$ 好无聊...... code: #include <bits/stdc++.h> #define N 500006 #define ll long long #define setIO(s) freopen(s".in","r",stdin) // , freopen(s".out","w",stdout) using namespace std; ch…
题目大意: 给定长度为n的数列X={x1,x2,...,xn}和长度为m的数列Y={y1,y2,...,ym},令矩阵A中第i行第j列的值\(A_{ij} = x_i \text{ xor } y_j\)每次询问给定矩形区域\(i \in [u,d],j \in [l,r]\)找出第k大的\(A_{ij}\). 题解: 中午会宿舍的时候看了一眼题面hhhhhhhh. 瞄了一眼300000的数据范围就走了hhhhhhhh. 一中午想了快1h就是没做出来hhhhhhhhh. 直到下午来了机房看到了n…
求 \(n\) 元数列的 \(k\) 个不同的子区间使得各个子区间异或和之和最大. Solution (差点又看错题了) 做个前缀和,于是转化成求序列异或和最大的 \(k\) 个数对 建一棵可持久化 0-1 Trie,这样我们就可以 \(O(log n)\) 求出对于某个右端点,它的所有可能答案中,第 \(k\) 大的答案 然后利用堆来维护答案.我们先把对每一个右端点,第 \(1\) 大的答案插入堆.然后循环弹出.每次弹出一个,如果它是 \(u\) 这个右端点对应的第 \(v\) 大的答案,我们…
BZOJ_3689_异或之_可持久化Trie+堆 Description 给定n个非负整数A[1], A[2], ……, A[n]. 对于每对(i, j)满足1 <= i < j <= n,得到一个新的数A[i] xor A[j],这样共有n*(n-1)/2个新的数.求这些数(不包含A[i])中前k小的数. 注:xor对应于pascal中的“xor”,C++中的“^”. Input 第一行2个正整数 n,k,如题所述. 以下n行,每行一个非负整数表示A[i]. Output 共一行k个数…
搞成前缀和然后就可以很方便地用可持久化trie维护了.时间复杂度O((N+M)*25) ------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm> #include<cctype>   using namespace std;   #define b(x) (1…
题目大意:给定一个序列,提供下列操作: 1.在数组结尾插入一个数 2.给定l,r,x,求一个l<=p<=r,使x^a[p]^a[p+1]^...^a[n]最大 首先我们能够维护前缀和 然后就是使x^sum[n]^sum[p-1]最大 x^sum[n]为定值,于是用Trie树贪心就可以 考虑到l-1<=p-1<=r-1,我们不能对于每一个询问都建一棵Trie树,可是我们能够对于Trie数维护前缀和,建立可持久化Trie树 每一个区间[l,r]的Trie树为tree[r]-tree[l…
开始想了一个二分+可持久化trie验证,比正解多一个 log 仔细思考,你发现你可以直接按位枚举,然后在可持久化 trie 上二分就好了. code: #include <bits/stdc++.h> #define N 700005 #define setIO(s) freopen(s".in","r",stdin) using namespace std; int n,m,tot,tl,tr; int ch[N*30][2],cnt[N*30],xx…