1.为什么 MongoDB 使用B-树,而不是B+树 MongoDB 是一种 nosql,也存储在磁盘上,被设计用在数据模型简单,性能要求高的场合.性能要求高,我们看B-树与B+树的区别: B+树内节点不存储数据,所有 data 存储在叶节点导致查询时间复杂度固定为 log n. 而B-树查询时间复杂度不固定,与 key 在树中的位置有关,最好为O(1) 我们说过,尽可能少的磁盘 IO 是提高性能的有效手段.MongoDB 是聚合型数据库,而B-树恰好 key 和 data 域聚合在一起. 2.…
摘要:Hash索引有两个明显的限制:(1)当key的数量很多时,维护Hash索引会给内存带来很大的压力:(2)区间查询很低效.如何对这两个限制进行优化呢?这就轮到本文介绍的主角,LSM树,出场了. 我们通过append-only log的数据结构,实现了一个具备高写入性能的key-value数据库.append-only log之所以有很高的写入性能,主要得益于磁盘的顺序写入.这可能违反了我们对磁盘的认知,因为在我们的印象中,写磁盘总是很慢.其实不然,准确地说应该是随机写磁盘很慢,因为在写之前可…
1.前提 讲LSM树之前,需要提下三种基本的存储引擎,这样才能清楚LSM树的由来: 哈希存储引擎. B树存储引擎. LSM树(Log-Structured Merge Tree)存储引擎. 2. 哈希存储引擎 哈希存储引擎哈希表的持久化实现,支持增.删.改以及随机读取操作,但不支持顺序扫描,对应的存储系统为key-value存储系统.对于key-value的插入以及查询,哈希表的复杂度都是O(1),明显比树的操作O(n)快,如果不需要有序的遍历数据,哈希表就非常适合.代表性的数据库有:Redis…
前段时间做拦截件监控的时候把拦截件生命期存入mongodb,因生命期有各种变化,因此对此表的更新写操作非常多,老大给我看了一篇文章,才知道mongodb已经支持lsm存储方式了. 原文如连接:https://github.com/wiredtiger/wiredtiger/wiki/Btree-vs-LSM 文中对比了LSM和B-Tree的读写吞吐量,在单线程写操作下和多线程读操作下的差异.英文差的小伙伴别指望我这个半吊子来翻译了. 总结一点就是:在写操作上,LSM的吞吐量会是B-Tree的1.…
关于LSM树 LSM树,即日志结构合并树(Log-Structured Merge-Tree).其实它并不属于一个具体的数据结构,它更多是一种数据结构的设计思想.大多NoSQL数据库核心思想都是基于LSM来做的,只是具体的实现不同.所以本来不打算列入该系列,但是有朋友留言了好几次让我讲LSM树,那么就说一下LSM树. LSM树诞生背景 传统关系型数据库使用btree或一些变体作为存储结构,能高效进行查找.但保存在磁盘中时它也有一个明显的缺陷,那就是逻辑上相离很近但物理却可能相隔很远,这就可能造成…
LSM树 和 TSM存储引擎 简介 2019-03-08 11:45:23 长烟慢慢 阅读数 461  收藏 更多 分类专栏: 时序数据库   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/changyanmanman/article/details/88344215 LSM树(Log-Structured Merge Tree)存储引擎 代表数据库:nessDB.leveldb.Hba…
<看图轻松理解数据结构和算法>,主要使用图片来描述常见的数据结构和算法,轻松阅读并理解掌握.本系列包括各种堆.各种队列.各种列表.各种树.各种图.各种排序等等几十篇的样子. 关于LSM树 LSM树,即日志结构合并树(Log-Structured Merge-Tree).其实它并不属于一个具体的数据结构,它更多是一种数据结构的设计思想.大多NoSQL数据库核心思想都是基于LSM来做的,只是具体的实现不同.所以本来不打算列入该系列,但是有朋友留言了好几次让我讲LSM树,那么就说一下LSM树. LS…
每一种数据存储系统,对应有一种存储模型,或者叫存储引擎.我们今天要介绍的是三种比较流行的存储模型,分别是: Hash存储模型 B-Tree存储模型 LSM存储模型 不同存储模型的应用情况 1.Hash存储模型 redis memcache 2.B-Tree存储模型 MySQL(以及大多数的关系型数据库) MongoDB 3.LSM树存储模型 HBase RocksDB 不同存储模型介绍 1.Hash存储模型 Hash存储模型其实就是HashMap(哈希表)的持久化实现.这种模型的特点是与Hash…
转自:http://www.mongoing.com/archives/2540 传统数据库引擎的数据组织方式,一般存储引擎都是采用 btree 或者 lsm tree 来实现索引,但是索引的最小单位不是 K/V 记录对象,而是数据页,数据页的组织关系实现就是存储引擎的数据组织方式. Mongodb-3.2已经WiredTiger设置为了默认的存储引擎,最近通过阅读wiredtiger源代码(在不了解其内部实现的情况 下,读代码难度相当大,代码量太大,强烈建议官方多出些介绍文章),理清了wire…
转自:http://0351slc.com/portal.php?mod=view&aid=12 近期网络上呈现了有关catena.benchmarking boltdb等时刻序列存储办法的介绍,Go社区也有相似的谈论论题,呈现了seriesly.influxDB.prometheus等优异项目.原文作者Jason moiron现在从事Datadog有关工作,文中他关于时刻序列数据库宣布了一些观点,(网友们在Hacker News上也有精彩的谈论)咱们一起来认识下. 时刻序列模型和图形式先于计算…
MongoDB(索引及C如何操作MongoDB) 索引总概况 db.test.ensureIndex({"username":1})//创建索引 db.test.ensureIndex({"username":1, "age":-1})//创建复合索引 数字1表示username键的索引按升序存储,-1表示age键的索引按照降序方式存储. // 该索引被创建后,基于username和age的查询将会用到该索引,或者是基于username的查询也会…
讲LSM树之前,需要提下三种基本的存储引擎,这样才能清楚LSM树的由来: 哈希存储引擎  是哈希表的持久化实现,支持增.删.改以及随机读取操作,但不支持顺序扫描,对应的存储系统为key-value存储系统.对于key-value的插入以及查询,哈希表的复杂度都是O(1),明显比树的操作O(n)快,如果不需要有序的遍历数据,哈希表就是your Mr.Right B树存储引擎是B树(关于B树的由来,数据结构以及应用场景可以看之前一篇博文)的持久化实现,不仅支持单条记录的增.删.读.改操作,还支持顺序…
转自: http://www.cnblogs.com/yanghuahui/p/3483754.html 讲LSM树之前,需要提下三种基本的存储引擎,这样才能清楚LSM树的由来: 哈希存储引擎  是哈希表的持久化实现,支持增.删.改以及随机读取操作,但不支持顺序扫描,对应的存储系统为key-value存储系统.对于key-value的插入以及查询,哈希表的复杂度都是O(1),明显比树的操作O(n)快,如果不需要有序的遍历数据,哈希表就是your Mr.Right B树存储引擎是B树(关于B树的由…
MySQL索引(二)B+树在磁盘中的存储 回顾  上一篇文章<MySQL索引为什么要用B+树>讲了MySQL为什么选择用B+树来作为底层存储结构,提了两个知识点: B+树索引并不能直接找到行,只是找到行所在的页,通过把整页读入内存,再在内存中查找. 索引的B+树高度一般为2-4层,查找记录时最多只需要2-4次IO. 为进一步知其所以然,今天来聊聊B+树索引在物理磁盘上是怎么设计存储的. 一.理解为什么要减少磁盘IO次数 众所周知,MySQL的数据实际是存储在文件中,而磁盘IO的查找速度是要远…
LSM树(Log-Structured Merge Tree)存储引擎 代表数据库:nessDB.leveldb.hbase等 核心思想的核心就是放弃部分读能力,换取写入的最大化能力.LSM Tree ,这个概念就是结构化合并树的意思,它的核心思路其实非常简单,就是假定内存足够大,因此不需要每次有数据更新就必须将数据写入到磁盘中,而可以先将最新的数据驻留在磁盘中,等到积累到最后多之后,再使用归并排序的方式将内存内的数据合并追加到磁盘队尾(因为所有待排序的树都是有序的,可以通过合并排序的方式快速合…
索引是帮助mysql获取数据的数据结构.最常见的索引是Btree索引和Hash索引. 不同的引擎对于索引有不同的支持:Innodb和MyISAM默认的索引是Btree索引:而Mermory默认的索引是Hash索引. Hash索引 哈希索引包含以数组形式组织的 Bucket 集合. 哈希函数将索引键映射到哈希索引中对应的 Bucket. 下图展示映射到哈希索引中三个不同 Bucket 的三个索引键. 出于演示目的,哈希函数的名称为 f(x). 用于哈希索引的哈希函数具有以下特征: SQL Serv…
平衡二叉树是基于分治思想采用二分法的策略提高数据查找速度的二叉树结构.非叶子结点最多只能有两个子结点,且左边子结点点小于当前结点值,右边子结点大于当前结点树,并且为保证查询性能增增删结点时要保证左右两边结点层级相差不大于1,具体实现有AVL.Treap.红黑树等.Java中TreeMap就是基于红黑树实现的. B树与平衡二叉树区别是它是平衡多路查找树,它每个节点包含的关键字增多了,在应用时可利用磁盘块的原理把结点大小限制在磁盘大小范围内从而优化读写速度,同时树的关键字增多后层级比原理的二叉树少量…
标签:SQL SERVER/MSSQL SERVER/数据库/DBA/索引体系结构/非聚集索引 概述 非聚集索引与聚集索引具有相同的 B 树结构,它们之间的显著差别在于以下两点: 基础表的数据行不按非聚集键的顺序排序和存储. 非聚集索引的叶层是由索引页而不是由数据页组成. 既可以使用聚集索引来为表或视图定义非聚集索引,也可以根据堆来定义非聚集索引.非聚集索引中的每个索引行都包含非聚集键值和行定位符.此定位符指向聚集索引或堆中包含该键值的数据行. 非聚集索引行中的行定位器或是指向行的指针,或是行的…
为什么文件存储要选用B+树这样的数据结构? "文件存储要选用B+树这样的数据结构"--没记错的话,这是严蔚敏那本数据结构书上的一句结论.不知道是我没细看还是她没细讲,反正当时纯粹应试地记了这么个结论.不求甚解终究不是一个好的学习态度,一直以来我都没有细想过这个事情,直到看到了这篇博文 . 此文信息量很大,值得mark下来慢慢精读.今天就暂记一下关于磁盘文件存储选用B+ tree这一点以前没深究过的问题.毕竟,好记性不如烂笔头,虽然这篇里面ctrl-v担当了比较多的任务-- 另一个比较有…
转自:http://blogread.cn/it/article/4088?f=wb1 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等.为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论. 文章主要内容分为三个部分. 第一部分主要从数据结…
原文地址 一.介绍 我们已经很清楚索引会提高查询效率.如果没有索引,MongoDB必须对全部集合进行扫描,即,扫描集合中每条文档以选择那些符合查询条件的文档.对查询来说如果存在合适的索引,则MongoDB可以利用索引减少扫描的文档数. 索引是一种特殊的数据结构,其中存储了集合的数据集的一小部分,以便容易遍历.索引本质上存储的其实是单个字段或者字段组的值,并根据字段值进行排序.索引的排序支持有效的相等比较和基于范围的查询操作.另外,MongoDB通过索引中的排序返回存储的结果. 下图说明了一个查询…
MongoDB的存储结构及对空间使用率的影响 使用MongoDB一段时间的同学肯定会发现,MongoDB往往会占用比实际数据大小多不少空间的问题.如果利用db.stats()命令去查看,会发现MongoDB会报告几种不同的空间大小信息,如dataSize, storageSize以及fileSize.这些大小到底指的是什么意思呢?让我们来通过了解MongoDB的存储机制来解析这几个数值的含义. 数据库文件类型 MongoDB的数据库文件主要有3种: journal 日志文件 namespace…
索引是帮助mysql获取数据的数据结构.最常见的索引是Btree索引和Hash索引. 不同的引擎对于索引有不同的支持:Innodb和MyISAM默认的索引是Btree索引:而Mermory默认的索引是Hash索引. 我们在mysql中常用两种索引算法BTree和Hash,两种算法检索方式不一样,对查询的作用也不一样. 一.BTree BTree索引是最常用的mysql数据库索引算法,因为它不仅可以被用在=,>,>=,<,<=和between这些比较操作符上,而且还可以用于like操…
b树 b树,又叫做平衡多路查找树.一个m阶的b树的特性如下: 树中的每个节点,最多有m个子节点. 除了根节点之外,其他的每个节点至少有ceil(m/2)个子节点,ceil函数为取上限函数. 所有的叶子节点都在同一层,叶子节点bubaohan任何关键信息. 每个非叶子节点都包含有n个关键字信息:{n,a0,k1,a1,k2,……,kn,an}, n的取值范围,[ceil(m/2)-1]<=n<=(m-1) Ki(i=1...n)为关键字,且关键字的信息按照顺序排序 Ai(i=0...n)为指向子…
标签:SQL SERVER/MSSQL SERVER/数据库/DBA/索引体系结构/非聚集索引 概述 非聚集索引与聚集索引具有相同的 B 树结构,它们之间的显著差别在于以下两点: 基础表的数据行不按非聚集键的顺序排序和存储. 非聚集索引的叶层是由索引页而不是由数据页组成. 既可以使用聚集索引来为表或视图定义非聚集索引,也可以根据堆来定义非聚集索引.非聚集索引中的每个索引行都包含非聚集键值和行定位符.此定位符指向聚集索引或堆中包含该键值的数据行. 非聚集索引行中的行定位器或是指向行的指针,或是行的…
一.MySQL索引原理 1.索引背景 生活中随处可见索引的例子,如火车站的车次表.图书的目录等.它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是我们总是通过同一种查找方式来锁定数据. 数据库也是一样,但显然要复杂许多,因为不仅面临着等值查询,还有范围查询(>.<.between.in).模糊查询(like).并集查询(or)等等.数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询…
原文:<大型网站技术架构:核心原理与案例分析>,作者:李智慧 本书前面提到,由于传统的机械磁盘具有快速顺序读写.慢速随机读写的访问特性,这个特性对磁盘存储结构和算法的选择影响甚大. 为了改善数据访问特性,文件系统或数据库系统通常会对数据排序后存储,加快数据检索速度,这就需要保证数据在不断更新.插入.删除后依然有序,传统关系数据库的做法是使用B+树,如图4.20所示. 4.20  B+树原理示意图 B+树是一种专门针对磁盘存储而优化的N叉排序树,以树节点为单位存储在磁盘中,从根开始查找所需数据所…
索引是帮助mysql获取数据的数据结构.最常见的索引是Btree索引和Hash索引. 不同的引擎对于索引有不同的支持:Innodb和MyISAM默认的索引是Btree索引:而Mermory默认的索引是Hash索引. Hash索引     所谓Hash索引,当我们要给某张表某列增加索引时,将这张表的这一列进行哈希算法计算,得到哈希值,排序在哈希数组上.所以Hash索引可以一次定位,其效率很高,而Btree索引需要经过多次的磁盘IO,但是innodb和myisam之所以没有采用它,是因为它存在着好多…
转自:http://www.mongoing.com/archives/2797 为什么需要索引? 当你抱怨MongoDB集合查询效率低的时候,可能你就需要考虑使用索引了,为了方便后续介绍,先科普下MongoDB里的索引机制(同样适用于其他的数据库比如mysql). mongo-9552:PRIMARY> db.person.find() { "_id" : ObjectId("571b5da31b0d530a03b3ce82"), "name&qu…
MongoDB · 引擎特性 · MongoDB索引原理数据库内核月报原文链接 http://mysql.taobao.org/monthly/2018/09/06/ 为什么需要索引?当你抱怨MongoDB集合查询效率低的时候,可能你就需要考虑使用索引了,为了方便后续介绍,先科普下MongoDB里的索引机制(同样适用于其他的数据库比如mysql). mongo-9552:PRIMARY> db.person.find(){ "_id" : ObjectId("571b5…