FCN笔记】的更多相关文章

FCN.py tensorflow命令行参数 FLAGS = tf.flags.FLAGS tf.flags.DEFINE_integer("batch_size", "2", "batch size for training") tf.flags.DEFINE_string("logs_dir", "logs/", "path to logs directory") tf.flags.…
图像语义分割的意思就是机器自动分割并识别出图像中的内容,我的理解是抠图- 之前在Faster R-CNN中借用了RPN(region proposal network)选择候选框,但是仅仅是候选框,那么我想提取候选框里面的内容,就是图像语义分割了. 简单的理解就是,图像的"分词技术". 参考文献: 1.知乎,困兽,关于图像语义分割的总结和感悟 2.微信公众号,沈MM的小喇叭,十分钟看懂图像语义分割技术 . . 一.FCN全卷积:Fully Convolutional Networks…
本文先对FCN的会议论文进行了粗略的翻译,使读者能够对论文的结构有个大概的了解(包括解决的问题是什么,提出了哪些方案,得到了什么结果).然后,给出了几篇博文的连接,对文中未铺开解释的或不易理解的内容作了详尽的说明.最后给出了FCN代码的详解(待更新). Fully Convolutional Networks for Semantic Segmentation 用于语义分割的全卷积网络 摘要 卷积网络是可以产生具有层次结构的特征的强大的视觉模型.我们展示了只通过由端到端,像素像素训练的卷积网络进…
今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 三位大佬:Jonathan Long Evan Shelhamer Trevor Darrell 这个网址是网上一个大佬记录的FCN的博客,同时深深感受到了自己与大佬的差距,但还是硬着头皮把论文阅读完成,贴出网址,和大家一起学习:https://blog.csdn.net/happyer8…
1.准备数据 把数据放进txt文件中(数据量大的话,就写一段程序自己把数据自动的写入txt文件中,任何语言都能实现),数据之间用逗号隔开,最后一列标注数据的标签(用于分类),比如0,1.每一行表示一个训练样本.如下图所示. 其中前三列表示数据(特征),最后一列表示数据(特征)的标签.注意:标签需要从0开始编码! 2.实现全连接网络 这个过程我就不多说了,如何非常简单,就是普通的代码实现,本篇博客的重点在于使用自己的数据,有些需要注意的地方我在后面会做注释.直接上代码 #隐含层参数设置 in_un…
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做是一个 黑匣子,只是用来提取特征,而是在大量的图像和 ImageNet 分类任务上关于 CNN 的 feature 做了大量的深度的研究.这些发现促使他们设计了该跟踪系统,他们发现: 不同的卷积层会从不同的角度来刻画目标.顶层的 layer 编码了更多的关于 语义特征并且可以作为种类检测器,而底层的…
  1.    ExtJs 结构树.. 2 2.    对ExtJs的态度.. 3 3.    Ext.form概述.. 4 4.    Ext.TabPanel篇.. 5 5.    Function扩展篇.. 7 6.    Ext.data.Store篇.. 10 7.    Ext.data.JsonReader篇一.. 12 8.    Ext.data.JsonReader篇二.. 15 9.    Ext.data.HttpProxy篇.. 19 10.     Ext.data.…
目录: 1. 序言 2.正文 2.1  关于ROI 2.2  关于RPN 2.3 关于anchor 3. 关于数据集合制作 4. 关于参数设置 5. 参考 1.序言 叽歪一下目标检测这个模型吧,这篇笔记是依据我对源码的阅读和参考一些博客,还有rbg的论文之后,这里描述一下个人对于faster-rcnn的一些微小的了解,只是总结一些关键点的理解. 首先看一下这张faster-rcnn整体的图: 2.正文 我们在细说这些关键节点的时候,首先让我们来看一下这个框架,这个图谱是引用的http://sha…
Matlab GUI 学习笔记 Ⅰ 1. Foreword Matlab 是严格意义上的编程语言吗?曾经有人告诉我他是通过 Matlab 学会了面对对象编程,我是不信的,但这依然不妨碍它在特殊领域的强大功能.因为选修了这1个学分的 Matlab GUI 设计,亦有人表达了对Previous Matlab Blog的一些情绪,便写上一些 Matlab GUI 编程学习的心得. 标题虽为Matlab GUI 学习笔记 Ⅰ,亦可成为称为图像处理技术应用实践 - 课程设计 1 指北. 本文所用环境为 M…
一:Emotion Recognition from Human Speech Using Temporal Information and Deep Learning(2018 InterSpeech) (1)分帧加窗,每一帧采用的特征向量为eGeMAPS特征集中的20个特征,每个utterance使用裁剪和padding的做法使得定长512帧,所以输入为20x512的矩阵.每个样本归一化到0均值1标准差(根据对应的说话人).使用的数据集为EmoDB. (2)准确率为88.9% 二:Speec…