torch_02_多项式回归】的更多相关文章

""" torch.float64对应torch.DoubleTensor torch.float32对应torch.FloatTensor 将真实函数的数据点能够拟合成一个多项式 eg:y = 0.9 +0.5×x + 3×x*x + 2.4 ×x*x*x """ import torch from torch import nn def make_features(x): x = x.unsqueeze(1)#在原来的基础上扩充了一维 ret…
含有x和y这两个变量的线性回归是所有回归分析中最常见的一种:而且,在描述它们关系的时候,也是最有效.最容易假设的一种模型.然而,有些时候,它的实际情况下某些潜在的关系是非常复杂的,不是二元分析所能解决的,而这时,我们需要多项式回归分析来找到这种隐藏的关系. 让我们看一下经济学里的一个例子:假设你要买一个具体的产品,而你要买的个数是q.如果产品的单价是p,然后,你要给y元.其实,这就是一个很典型的线性关系.而总价和产品数量呈正比例关系.下面,根据这个实例,我们敲击行代码来作它们的线性关系图: p…
相关内容连接: 机器学习:Python中如何使用最小二乘法(以下简称文一) 机器学习:形如抛物线的散点图在python和R中的非线性回归拟合方法(以下简称文二) 有些内容已经在上面两篇博文中提到了,所以就不重复了.这里主要讲的是sklearn包与scipy包中相关函数的区别.并且多项式回归和普通最小二乘法联系比较紧密,所以也放到此处讲了. 1.普通最小二乘法 1)文一中的数据采用sklearn包的函数拟合 from sklearn import linear_model import numpy…
对于multiple features 的问题(设有n个feature),hypothesis 应该改写成 \[ \mathit{h} _{\theta}(x) = \theta_{0} + \theta_{1}\cdot x_{1}+\theta_{2}\cdot x_{2}+\theta_{3}\cdot x_{3}+\dots+\theta_{n}\cdot x_{n} \] 其中: \[ x=\begin{bmatrix}x_{1}\\ x_{2}\\ x_{3}\\ \vdots \\…
回归问题 回归问题包含有线性回归和多项式回归 简单来说,线性回归就是用多元一次方程拟合数据,多项式回归是用多元多次来拟合方程 在几何意义上看,线性回归拟合出的是直线,平面.多项式拟合出来的是曲线,曲面. 二,线性回归问题 2.1 线性回归 线性回归问题,是监督学习,输出是连续值.(批梯度下降训练参数+平方误差函数做代价函数) 线性问题的求解另一种方法:正规方程.正规方程把参数看成一个整体进行求导.用矩阵一些性质进行简化结果 正规方程: 思路:用矩阵来表示代价函数,求导数为0的时候参数的值,(最后…
现实世界的曲线关系都是通过增加多项式实现的,现在解决多项式回归问题 住房价格样本 样本图像 import matplotlib.font_manager as fm import matplotlib.pyplot as plt myfont = fm.FontProperties(fname='C:\Windows\Fonts\simsun.ttc') # plt.figure() # 实例化作图变量 plt.title('房价面积价格样本', fontproperties = myfont)…
[机器学习]多项式回归原理介绍 [机器学习]多项式回归python实现 [机器学习]多项式回归sklearn实现 使用sklearn框架实现多项式回归.使用框架更方便,可以少写很多代码. 使用一个简单的数据集来模拟,只有几条数据. 代码 如果不用框架,需要自己手动对数据添加高阶项,有了框架就方便多了.sklearn 使用 Pipeline 函数简化这部分预处理过程. 当 PolynomialFeatures 中的degree=1时,效果和使用 LinearRegression 相同,得到的是一个…
[机器学习]多项式回归原理介绍 [机器学习]多项式回归python实现 [机器学习]多项式回归sklearn实现 使用python实现多项式回归,没有使用sklearn等机器学习框架,目的是帮助理解算法的原理. 使用一个简单的数据集来模拟,只有几条数据. 代码 从数据集中读取X和y. 为X添加二次方项,用Z替换. 给Z添加 1 列,初始化为 1 ,用来求偏置项. 划分训练集和测试集. 将Z和y的训练集转换为矩阵形式. 和线性回归类似,使用正规方程法,先验证矩阵的可逆性. 去掉Z中全为1的列. 使…
一.scikit-learn 中的多项式回归 1)实例过程 模拟数据 import numpy as np import matplotlib.pyplot as plt x = np.random.uniform(-3, 3, size=100) X = x.reshape(-1, 1) y = 0.5 * x**2 + x + np.random.normal(0, 1, 100) 相对于scikit-learn中的多项式回归,自己使用多项式回归,就是在使用线性回归前,改造了样本的特征: s…
多项式回归也称多元非线性回归,是指包含两个以上变量的非线性回归模型.对于多元非线性回归模型求解的传统解决方案,仍然是想办法把它转化成标准的线性形式的多元回归模型来处理. 多元非线性回归分析方程 如果自变数与依变数Y皆具非线性关系,或者有的为非线性有的为线性,则选用多元非线性回归方程是恰当的.例如,二元二次多项式回归方程为: 令,及于是上式化为五元一次线性回归方程: 这样以来,便可按多元线性回归分析的方法,计算各偏回归系数,建立二元二次多项式回归方程. -参考文献:智库百科,点击打开 多元二项式回…
1. Main Point 0x1:行文框架 第二章:我们会分别介绍NNs神经网络和PR多项式回归各自的定义和应用场景. 第三章:讨论NNs和PR在数学公式上的等价性,NNs和PR是两个等价的理论方法,只是用了不同的方法解决了同一个问题,这样我们就形成了一个统一的观察视角,不再将深度神经网络看成是一个独立的算法. 第四章:讨论通用逼近理论,这是为了将视角提高到一个更高的框架体系,通用逼近理论证明了所有的目标函数都可以拟合,换句话说就是,所有的问题都可以通过深度学习解决.但是通用逼近理论并没有告诉…
我们仍然使用披萨直径的价格的数据 import matplotlib matplotlib.rcParams['font.sans-serif']=[u'simHei'] matplotlib.rcParams['axes.unicode_minus']=False import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegres…
"""Softmax.""" scores = [3.0, 1.0, 0.2] import numpy as np def softmax(x): """Compute softmax values for x.""" #pass # TODO:Compute and return softmax(x) return np.exp(x) / np.sum(np.exp(x), axis…
回归是指拟合函数的模型.图像等.与分类不同,回归一般是在函数可微的情况下进行的.因为分类它就那么几类,如果把类别看做函数值的话,分类的函数值是离散的,而回归的函数值通常是连续且可微的.所以回归可以通过梯度下降法来进行. 比如对于函数$y =b + wx$,$x$是输入变量,$w$和$b$是参数.可以使用训练集输入一组$x$和$y$来进行对$w$和$b$的训练. 下面举多项式回归为例,也就是选择多项式为模型的假设空间,训练多项式的系数. 多项式回归 由泰勒公式我们可以知道,多项式可以拟合任何函数.…
sklearn中的多项式回归算法 1.多项式回归法多项式回归的思路和线性回归的思路以及优化算法是一致的,它是在线性回归的基础上在原来的数据集维度特征上增加一些另外的多项式特征,使得原始数据集的维度增加,然后基于升维后的数据集用线性回归的思路进行求解,从而得到相应的预测结果和各项的系数. 2.多项式回归的函数在pyhton的sklearn机器学习库中没有专门的定义,因为它只是线性回归方式的一种特例,但是我们自己可以按照多元线性回归的方式对整个过程进行相关的定义,然后包装成为一个函数进行相关的调用即…
本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理 线性回归的改进版本中的多项式回归.如果您知道线性回归,那么对您来说很简单.如果没有,我将在本文中解释这些公式.还有其他先进且更有效的机器学习算法.但是,学习基于线性的回归技术是一个好主意.因为它们简单,快速并且可以使用众所周知的公式.尽管它可能不适用于复杂的数据集. 多项式回归公式 仅当输入变量和输出变量之间存在线性相关性时,线性回归才能很好地执行.如前所述,多项式回归建立在线性回归的基础上.如果…
特征选择 还是回归到房价的问题.在最开始的问题中,我们假设房价与房屋面积有关,那么最开始对房价预测的时候,回归方程可能如下所示: 其中frontage表示的房子的长,depth表示的是房子的宽. 但长和宽显然不是用于预测房价的一个很好的特征,正常的特征应该是房屋面积,那么正常的线性方程应该为: 其中X表示的房屋面积. 所以选择了合适的特征,对算法进行预测和分类是非常有好处的 多项式回归 很多时候,线性回归可能无法很好地拟合实际情况.例如房屋面积与房价之间的关系如下: 很明显,线性回归的方式无法很…
多项式回归以及在sklearn中使用多项式回归和pipeline 多项式回归 线性回归法有一个很大的局限性,就是假设数据背后是存在线性关系的,但是实际上,具有线性关系的数据集是相对来说比较少的,更多时候,数据之间是具有的非线性的关系,那么我们想要用线性回归法来对非线性的数据进行处理应该怎么办呢,我们可以使用多项式回归的手段来改进线性回归法,使线性回归法也可以对非线性的数据进行处理,并进行预测 通过多项式回归可以引出一个很重要的概念,即模型泛化的问题 什么是多项式回归呢? 对于线性回归来说,对于数…
多项式回归就是数据的分布不满足线性关系,而是二次曲线或者更高维度的曲线.此时只能使用多项式回归来拟合曲线.比如如下数据,使用线性函数来拟合就明显不合适了. 接下来要做的就是升维,上面的真实函数是:$ y = 0.5x^2 + 2x + 5\(.而样本数据的形式是(x, y),以这种方式只能训练出\)y = ax + b\(.所以,手动构造\)x^2\(项,让样本的形式变为:\)(x, x^2, y)\(.这样,增加了一个\)x^2$特征,再使用线性回归就可以得到形如 \(y = ax^2 + b…
目录 基本形式 小试牛刀 再试牛刀 调用类库 基本形式 上文中,大叔说道了线性回归,线性回归是个非常直观又简单的模型,但是很多时候,数据的分布并不是线性的,如: 如果我们想用高次多项式拟合上面的数据应该如何实现呢?其实很简单,设假设函数为 \[y = \theta_0 + \theta_1x + \theta_2x^2 \tag{1}\] 与之相像的线性函数为 \[y = \theta_0 + \theta_1x_1 + \theta_2x_2 \tag{2}\] 观察(1)式和(2)式,其实我…
首先我们需要明确一个概念,我们讨论的线性或者非线性针对的是自变量的系数,而非自变量本身,所以这样的话不管自变量如何变化,自变量的系数如果符合线性我们就说这是线性的.所以这里我们也就可以描述一下多项式线性回归. 由此公式我们可以看出,自变量只有一个,就是x,只不过x的级数(degree)不同而已. 我们这次用的数据是公司内部不同的promotion level所对应的薪资 下面我们来看一下在Python中是如何实现的 import numpy as np import matplotlib.pyp…
代码 sessionInfo() # 查询版本及系统和库等信息 # 工作目录设置 getwd() path <- "E:/RSpace/R_in_Action" setwd(path) rm(list=ls()) # 清空内存中的变量 women # 展示基础安装中的 women 数据集 str(women) # 查看 women 的数据结构 summary(women) # 查看 women 的摘要统计量 # 通过添加高次项来提高回归模型的精度 fit2 <- lm(we…
Accord.NET Framework是在AForge.NET项目的基础上封装和进一步开发而来.因为AForge.NET更注重与一些底层和广度,而Accord.NET Framework更注重与机器学习算法以及提供计算机视频.音频.信号处理以及统计应用相关的解决方案.该项目使用C#语言编写,项目主页:http://accord-framework.net/ 说明:该文章只是一个基本介绍,主要内容是翻译的官方文档和介绍,部分英文表述个人能力有限,不太熟悉,所以直接照搬原文,有比较确切的知道中文名…
1.Feature Scaling(特征缩放): 如上图所示,x1是房屋面积,x2是房间个数,若不进行特征缩放,则代价函数J的曲线近似为一个瘦长的椭圆(我暂时这么理解,θ1和θ2分别是x1和x2的权值系数,而x2的特征向量值相较x1很小,则x1变化一个较小的量,在J的同一条相同的圆弧曲线上θ2就要变化一个较大的量,因此成为一个椭圆形式) 而对于左图的椭圆,会加大用梯度下降算法到达最低点的难度,所以我们可以采用右图的特征缩放,是他们都缩放到同一个数量级,这样J的形状近似为一个圆,更容易达到最低点.…
成本函数(cost function)也叫损失函数(loss function),用来定义模型与观测值的误差.模型预测的价格与训练集数据的差异称为残差(residuals)或训练误差(test errors). 我们可以通过残差之和最小化实现最佳拟合,也就是说模型预测的值与训练集的数据最接近就是最佳拟合.对模型的拟合度进行评估的函数称为残差平方和(residual sum of squares)成本函数.就是让所有训练数据与模型的残差的平方之和最小. 我们用R方(r-squared)评估预测的效…
多元回归 回顾一下简单线性回归:一个特征,两个相关系数 实际的应用要比这种情况复杂的多,比如 1.房价和房屋面积并不只是简单的线性关系. 2.影响房价的因素有很多,不仅仅是房屋面积,还包括很多其他因素. 现在描述第一种情况,房价和房屋面积不只是简单的线性关系,可能是二次或者多项式: 二次函数: 多项式函数: 多项式回归: 这里的特征都是通过房屋面积这个自变量得到的. 第二种情况,影响房屋价格的因素不仅仅是房屋面积,这里增加了卧室的数量.这种就是多元线性回归. 通用表达式: 多元线性回归中,理解相…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 229 的学习笔记. Machine Learning Algorithms Study Notes 系列文章介绍 3 Learning Theory 3.1 Regularization and model selection 模型选择问题:对于一个学习问题,可以有多种模型选择.比如要拟合一组样本点,…
本文根据水库中蓄水标线(water level) 使用正则化的线性回归模型预 水流量(water flowing out of dam),然后 debug 学习算法 以及 讨论偏差和方差对 该线性回归模型的影响. ①可视化数据集 本作业的数据集分成三部分: ⓐ训练集(training set),样本矩阵(训练集):X,结果标签(label of result)向量 y ⓑ交叉验证集(cross validation set),确定正则化参数 Xval 和 yval ⓒ测试集(test set)…
4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性(可选) 4.1  多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn).…
一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉.重复多次. 假设我们40%的概率选到红盒子,60%的概率选到蓝盒子.并且当我们把取出的水果拿掉时,选择盒子中任何一个水果还是等可能的. 问题: 1.整个过程中,取得苹果的概率有多大? 2.假设已经去的了一个橘子的情况下,这个橘子来自蓝盒子的可能性有多大? (这里,推荐一篇好文:数学之美番外篇:平凡而…