差分形式的牛顿插值法(c++)】的更多相关文章

本程序对cosx函数进行插值,取步长为0.1,因此x的值为0.00,0.10,0.20,0.30,对应的y值为cos(0.00),cos(0.10),cos(0.20),cos(0.30),其实本程序Horner方法(又称秦九韶算法)效率更高,计算更加准确 #include <iostream> #include <cmath> using namespace std; int factorial(int n);      //声明阶乘函数 double average_devia…
拉格朗日插值法的最大毛病就是每次引入一个新的插值节点,基函数都要发生变化,这在一些实际生产环境中是不合适的,有时候会不断的有新的测量数据加入插值节点集, 因此,通过寻找n个插值节点构造的的插值函数与n+1个插值节点构造的插值函数之间的关系,形成了牛顿插值法.推演牛顿插值法的方式是归纳法,也就是计算Ln(x)- Ln+1(x),并且从n=1开始不断的迭代来计算n+1时的插值函数. 牛顿插值法的公式是: 注意:在程序中我用W 代替  计算牛顿插值函数关键是要计算差商,n阶差商的表示方式如下:   关…
h1 { margin-bottom: 0.21cm } h1.western { font-family: "Liberation Sans", sans-serif; font-size: 18pt } h1.cjk { font-family: "Noto Sans CJK SC Regular"; font-size: 18pt } h1.ctl { font-family: "Noto Sans CJK SC Regular"; fon…
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);grid on;%由图像可知 根在1.05到1.15之间 syms x s0=diff(x^3-x^2+sin(x)-1,x,1); % 得到s0= cos(x) - 2*x + 3*x^2 % 迭代方程为 y=x-(x.^3-x.^2+sin(x)-1)/(cos(x) - 2.*x + 3*x.^2…
摘自<c++和面向对象数值计算>,代码简洁明快,采用模板函数,通用性增强,牛顿差分合理利用存储空间,采用Horner算法(又称秦九韶算法)提高精度,减少时间复杂度,高!确实是高!对其中代码稍加改动. #include<iostream> #include <vector> using namespace std; template<class T> T newton(const vector<T>& vx,const vector<…
X Y 0.40 0.41075 0.55 0.57815 0.65 0.69675 0.80 0.88811 0.90 1.02652 1.05 1.25382 #include using namespace std; double average_deviation(double* function_value,double* independent_variable,int end);      //声明均差函数 int main() { double x[5]={0.40,0.55,0…
牛顿插值法的原理,在维基百科上不太全面,具体可以参考这篇文章.同样贴出,楼主作为初学者认为好理解的代码. function p=Newton1(x1,y,x2) %p为多项式估计出的插值 syms x n = length(x1); %差商的求法 for i=2:n f1(i,1)=(y(i)-y(i-1))/(x1(i)-x1(i-1)); end for i=2:n for j=i+1:n f1(j,i)=(f1(j,i-1)-f1(j-1,i-1))/(x1(j)-x1(j-i)); en…
一道很好的题,综合很多知识点. 首先复习差分:      将原来的每个点a[i]转化为b[i]=a[i]^a[i+1],(如果是求和形式就是b[i]=a[i+1]-a[i]) 我们发现这样的方便在于我们可以运用前缀和的形式,求出单点值,当然,差分一般支持区间修改 单点查询,同时我们发现异或也满足转化的性质,我们发现异或的区间修改,也可以化为单点修改 然后进行问题转换:在一个序列中按要求修改端点,问最少修改多少次区间全部为0 把原来的每个数转化为差分形式,注意要多加一个b[0]=b[0]^b[1]…
插值多项式的牛顿法 1.为何需要牛顿法? ​ 使用Lagrange插值法不具备继承性.当求好经过\(({x_0},{y_0})-({x_n},{y_n})\)共n+1个点的插值曲线时候,如果再增加一个点,由Lagrange插值法通式\[\sum_{k=0}^{n}\frac{\prod_{i=0,i\ne k}^{n}(x-x_i)}{\prod_{i=0,i\ne k}^{n}(x_k-x_i)}y_k\]可以知道,当再增加一个点时候,Lagrange 多项式还要重新计算以确定系数. 2.牛顿…
当插值的要求涉及到对插值函数导数的要求时,普通插值问题就变为埃尔米特插值问题.拉格朗日插值和牛顿插值的要求较低,只需要插值函数的函数值在插值点与被插函数的值相等,以此来使得在其它非插值节点插值函数的值能接近被插函数.但是有时候要求会更高,不仅要插值函数与被插函数在插值节点函数值相等,而且要求它们的导数相等. 其实此时的情况并没有变得复杂,解决这个问题的思路与拉格朗日插值法的思路是相同的,不同点在于插值条件的约束函数增加了导数一项,原来由于0~n插值节点有n+1个插值节点,需要求出n+1个线性方程…