matlab-线性回归】的更多相关文章

matlab 线性回归实战 统一 输入时列向量 输出也是列向量 中间的过程可以出现行向量或者列向量,但是不能影响输入和输出为列向量 参数运算的输入都不会只是一个实数,要么是列向量,要么是一个矩阵 对于矩阵,取数据也是一列一列的去,也就是\(X(:1)\),\(X(:2)\)等 命令的时候为向量和矩阵加后缀, 如X_norm, x_new…
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性回归.多参数线性回归和 逻辑回归的总结版.旨在帮助大家更好地理解回归,所以我在Matlab中分别对他们予以实现,在本文中由易到难地逐个介绍.     本讲内容: Matlab 实现各种回归函数 ========================= 基本模型 Y=θ0+θ1X1型---线性回归(直线拟合…
灰色预测的主要特点是只需要4个数据,就能解决历史数据少,序列的完整性以及可靠性低的问题,能将无规律的原始数据进行生成得到规律性较强的生成序列,易于检验 但缺点是只适合中短期的预测,且只适合指数级增长的预测. 在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据预处理后的数据序列称为生成列.对原始数据进行预处理,不是寻找它的统计规律和概率分布,而是将杂乱无章的原始数据列通过一定的方法处理,变成有规律的时间序列数据,即以数找数的规律,再建立动态模型. 灰色预测通过鉴别系统因素之间发展趋势…
本文主要讲解在matlab中实现Linear Regression和Logistic Regression的代码,并不涉及公式推导.具体的计算公式和推导,相关的机器学习文章和视频一大堆,推荐看Andrew NG的公开课. 一.线性回归(Linear Regression) 方法一.利用公式 : function [ theta ] = linearReg() %线性回归. X=[1 1;1 2;1 3;1 4]; %注意第一列全为1,即x0=1,第二列才为x1 Y=[1.1;2.2;2.7;3.…
给你多组数据集,例如给你很多房子的面积.房子距离市中心的距离.房子的价格,然后再给你一组面积. 距离,让你预测房价.这类问题称为回归问题. 回归问题(Regression) 是给定多个自变量.一个因变量以及代表它们之间关系的一些训练样本,来确定它们的关系.其中最简单的一类是线性回归(Linear Regression). 线性回归函数的形式如下:   (1) θj 是我们要求的系数.接下来介绍一下求θ 的两种方法,梯度下降(Gradient Descent)和正规方程(Normal Rquati…
首先我们要试验的是 人体脂肪fat和年龄age以及体重weight之间的关系,我们的目标就是得到一个最优化的平面来表示三者之间的关系: TensorFlow的程序如下: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt W = tf.Variable(tf.zeros([2, 1], name="weight_age")) b = tf.Variable(0.0, name="…
看机器学习的时候遇到的第一个算法就是线性回归,高数中很详细的说明了线性回归的原理和最小2乘法的计算过程,很显然不适合手动计算,好在各种语言都有现成的函数使用,让我们愉快的做个调包侠吧 简单线性回归 R越接近1表示拟合效果越好 >> x=[0,1,2,3,4,5,6,7] x = 0 1 2 3 4 5 6 7 >> y=[27.0,26.8,26.5,26.3,26.1,25.7,25.3,24.8] y = 列 1 至 7 27.000000000000000 26.800000…
题目太长啦!文档下载[传送门] 第1题 简述:设计一个5*5的单位矩阵. function A = warmUpExercise() A = []; A = eye(5); end 运行结果: 第2题 简述:实现单变量线性回归. 第1步:加载数据文件: data = load('ex1data1.txt'); X = data(:, 1); y = data(:, 2); m = length(y); % number of training examples % Plot Data % Not…
一.理论 二.数据集 6.1101,17.592 5.5277,9.1302 8.5186,13.662 7.0032,11.854 5.8598,6.8233 8.3829,11.886 7.4764,4.3483 6.4862,6.5987 5.0546,3.8166 5.7107,3.2522 14.164,15.505 5.734,3.1551 8.4084,7.2258 5.6407,0.71618 5.3794,3.5129 6.3654,5.3048 5.1301,0.56077…
通常我们使用的最小二乘都需要预先设定一个模型,然后通过最小二乘方法解出模型的系数. 而大多数情况是我们是不知道这个模型的,比如这篇博客中z=ax^2+by^2+cxy+dx+ey+f 这样的模型. 局部加权线性最小二乘就不需要我们预先知道待求解的模型,因为该方法是基于多个线性函数的叠加,最终只用到了线性模型. 计算线性模型时引入了一个加权函数: 来给当前预测数据分配权重,分配机制是:给距离近的点更高的权重,给距离远的点更低的权重. 公式中的k类似与高斯函数中的sigma. 当sigma变大时,函…