题目:https://loj.ac/problem/2720 自己总是分不清 “SAM上一个点的 len[ ] ” 和 “一个串的前缀在 SAM 上匹配的 len ”. 于是原本想的 68 分做法是,求出 T 的本质不同子串个数,减去 T 在 S 的 SAM 上走的 fail 树的链并权值.SAM 上一个点的权值就是它代表的子串个数(len[ cr ] - len[ fa ]). 其实不行.因为 T 走到 S 的 SAM 的某个点,不是能匹配该点代表的所有子串,而是只作为 T 的一个前缀匹配了一…
链接大合集: loj uoj luogu bzoj 单纯地纪念一下写的第一份5K代码.../躺尸 因为ZJOI都不会所以只好写NOI的题了... 总之字符串题肯定一上来就拼个大字符串跑后缀数组啦! (为了便于说明,放一下样例的sa) #sbape#sgepe #sgepe #smape#sbape#sgepe amgepe#smape#sbape#sgepe ape#sbape#sgepe ape#sgepe bamgepe#smape#sbape#sgepe bape#sgepe cbamge…
题面: https://loj.ac/problem/2720 考虑枚举T串的每个后缀i,我们要做两件事. 一.统计有多少子串[i,j]在S中要求位置出现. 二.去重. 第二步好做,相当于在后缀数组上找到后继,假设后继的height为p. 那对于i这个后缀,只计算i+p后面的即可. 一的话每次找到最远的能匹配的一个位置,可以发现枚举每个后缀时右端点单调,双指针扫一下. 剩下的就是快速的判定一个子串是否合法. 考虑在后缀数组上左右二分到一个区间满足所有后缀和i的lcp都大于等于len(len=j-…
题解 把S串建一个后缀自动机 用一个可持久化权值线段树维护每个节点的right集合是哪些节点 求本质不同的子串我们就是要求T串中以每个点为结束点的串有多少在\(S[l..r]\)中出现过 首先我们需要对于T串每个点本身和自己的匹配长度,可以建一个后缀自动机来完成 然后把T串放在S串上跑匹配,匹配到下一个点x时,匹配的长度是len,如果x所在的right集合在\([l + len - 1,r]\)中没有,那么就不合法,把长度减少,如果长度减少到和父亲节点的长度一样,则需要把当前节点跳到父亲节点上…
「NOI2018」你的名字 题目描述 小A 被选为了\(ION2018\) 的出题人,他精心准备了一道质量十分高的题目,且已经 把除了题目命名以外的工作都做好了. 由于\(ION\) 已经举办了很多届,所以在题目命名上也是有规定的,\(ION\) 命题手册规 定:每年由命题委员会规定一个小写字母字符串,我们称之为那一年的命名串,要求每道题的名字必须是那一年的命名串的一个非空连续子串,且不能和前一年的任何一道题目的名字相同. 由于一些特殊的原因,小A 不知道\(ION2017\) 每道题的名字,但…
题意 LOJ #2721. 「NOI2018」屠龙勇士 题解 首先假设每条龙都可以打死,每次拿到的剑攻击力为 \(ATK\) . 这个需要支持每次插入一个数,查找比一个 \(\le\) 数最大的数(或者找到 \(>\) 一个数的最小数),删除一个数. 这个东西显然是可以用 std :: multiset<long long> 来处理的(手写权值线段树或者平衡树也行). 对于每一条龙我们只能刚好一次秒杀,并且要恰好算血量最后为 \(0\)(一波带走). 然后就转化成求很多个方程: \[ \…
题目链接 loj#2718. 「NOI2018」归程 题解 按照高度做克鲁斯卡尔重构树 那么对于询问倍增找到当前点能到达的高度最小可行点,该点的子树就是能到达的联通快,维护子树中到1节点的最短距离 spfa她死了...同步赛没写的说... 似乎前两题比去年简单些....连蒟蒻我都可做前两题的说 代码 #include<queue> #include<cstdio> #include<cstring> #include<algorithm> inline in…
题目链接 loj#2721. 「NOI2018」屠龙勇士 题解 首先可以列出线性方程组 方程组转化为在模p意义下的同余方程 因为不保证pp 互素,考虑扩展中国剩余定理合并 方程组是带系数的,我们要做的是在%p意义下把系数除过去,(系数为atk[i]) (atk[i],p[i]) 不等于1时无逆元,此时仍可能有解 很显然无解的情况就是 瞎jb猜的,无解的话就是%p[i]意义下atk[i] != 0 ,a[i] = 0 考虑原方程式ai = atk{i] * x + p[i] * y 方程两边同除g…
Loj #2719. 「NOI2018」冒泡排序 题目描述 最近,小 S 对冒泡排序产生了浓厚的兴趣.为了问题简单,小 S 只研究对 *\(1\) 到 \(n\) 的排列*的冒泡排序. 下面是对冒泡排序的算法描述. 输入:一个长度为 n 的排列 p[1...n] 输出:p 排序后的结果. for i = 1 to n do ​ for j = 1 to n - 1 do ​ if(p[j] > p[j + 1]) ​ 交换 p[j] 与 p[j + 1] 的值 冒泡排序的交换次数被定义为交换过程…
题目传送门 传送门 题目大意 (相信大家都知道) 显然要考虑一个排列$p$合法的充要条件. 考虑这样一个构造$p$的过程.设排列$p^{-1}_{i}$满足$p_{p^{-1}_i} = i$. 初始令$q = (1, 2, \cdots, n)$. 依次考虑$i = 1, 2, \cdots, n$. 设$x = p_i$,如果$q^{-1}_x > i$,那么交换$q_x, q_{x - 1}$. 上述算法每次交换的时候会使逆序对增加1. 考虑给出的下界,假设交换的是$i$和$i + 1$.…