题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3754 题解 感觉这个思路挺神仙的. 后悔没有好好观察题目的数据范围,一直把 \(n\) 和 \(m\) 当成 1e5 来思考,\(c\) 竟然也只有 \(100\). 有了数据范围以后可以发现,边权和位于 \(nc\) 级别,大概就是 \(10000\) 左右. 所以我们可以考虑枚举边权和,从而得到边权的平均数. 然后我们给每一条边的边权赋值为 \((\)原始边权 \(-\) 平均数\()^…
[BZOJ3080]Minimum Variance Spanning Tree/[BZOJ3754]Tree之最小方差树 题目大意: 给定一个\(n(n\le50)\)个点,\(m(m\le1000)\)条边的带权无向图,每条边的边权为\(w_i(w_i\le50)\).求最小方差生成树. 3080数据范围:\(n\le50,m\le1000,w_i\le50\): 3754数据范围:\(n\le100,m\le1000,w_i\le100\). 其中3754询问的是最小标准差. 思路: 由于…
3754: Tree之最小方差树 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 402  Solved: 152[Submit][Status][Discuss] Description Wayne在玩儿一个很有趣的游戏.在游戏中,Wayne建造了N个城市,现在他想在这些城市间修一些公路,当然并不是任意两个城市间都能修,为了道路系统的美观,一共只有M对城市间能修公路,即有若干三元组 (Ui,Vi,Ci)表示Ui和Vi间有一条长度为Ci的双向道路.…
题目描述 给出一张无向图,求它的一棵生成树,使得选出的所有边的方差最小.输出这个最小方差. 输入 第一行两个正整数N,M 接下来M行,每行三个正整数Ui,Vi,Ci N<=100,M<=2000,Ci<=100 输出 输出最小的标准差,保留四位小数. 样例输入 3 3 1 2 1 2 3 2 3 1 3 样例输出 0.5000 题解 最小生成树 由于Ci很小,因此选出边的总和不会很大.可以考虑枚举这个总和(即平均值). 然后把每条边的边权看作 $|c_i-\bar c|$ ,跑最小生成树…
发现,若使方差最小,则使Σ(wi-平均数)2最小即可. 因为权值的范围很小,所以我们可以枚举这个平均数,每次把边权赋成(wi-平均数)2,做kruscal. 但是,我们怎么知道枚举出来的平均数是不是恰好是我们的这n-1条边的呢? 就在更新答案的时候加个特判就行了. #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> using namespace std; #defin…
题目大意: 求最小方差生成树.N<=100,M<=2000,Ci<=100 题解: 首先我们知道这么一个东西: 一些数和另一个数的差的平方之和的最小值在这个数是这些数的平均值时取得 所以我们可以枚举这个平均数,然后计算所有边与该值的差的平方 然后扔下去跑一个最小生成树 然后我们通过枚举这个平均数发现这个平均数和答案的对应函数的图像是一个波形函数 所以我们可以直接在这个波形图像上找函数最低点: 相应的就有 爬山算法 模拟退火 两种算法 所以我们可以先在全局用模拟退火然后在局部用爬山算法.…
题目链接: TP 题解: 都是骗子233,我还以为是什么神奇的算法. 由于边权的范围很小,最小生成树和最大生成树之间的总和差不会太大,所以可以枚举边权和,再直接根据方差建最小生成树,每次更新答案即可. 代码: #define Troy #include <bits/stdc++.h> using namespace std; inline int read(){ ,k=;char ch=getchar(); :,ch=getchar(); &ch<=+(ch^),ch=getch…
Description Wayne 在玩儿一个很有趣的游戏.在游戏中,Wayne 建造了N 个城市,现在他想在这些城市间修一些公路,当然并不是任意两个城市间都能修,为了道路系统的美观,一共只有M 对城市间能修公路,即有若干三元组(Ui, Vi,Ci) 表示Ui 和Vi 间有一条长度为Ci 的双向道路.当然,游戏保证了,若所有道路都修建,那么任意两城市可以互相到达. Wayne 拥有恰好N - 1 支修建队,每支队伍能且仅能修一条道路.当然,修建长度越大,修建的劳累度也越高,游戏设定是修建长度为C…
http://www.lydsy.com/JudgeOnline/problem.php?id=3754 核心思想:暴力枚举所有可能的平均数,对每个平均数排序后Kruskal. 正确的答案一定是最小的,枚举到正确的平均数后一定会算出正确答案. 枚举的平均数太多了,险些TLE.每两个相邻的整数\(a\),\(b\)\((a<b)\)之间枚举\(a+\frac13\),\(a+\frac23\)两个值作为平均数就可以了(虽然不是正确的答案的平均数,但和正确的答案的平均数排序之后的序列是相同的).我并…
枚举平均数. mdzz编译器. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #define maxv 100500 #define maxe 200500 using namespace std; ,r=,father[maxv],rank[maxv]; double ans=999999999999999999…
洛谷 题意: 给出一个无向图,之后有\(q,q\leq 30\)组询问,每组询问有一个\(x\),回答有多少点对\((a,b)\)其\(a-b\)最小割不超过\(x\). 思路: 这个题做法要最小割树...这个东西大概就是对于当前点集任意选择两个点\(s,t\)作为源点和汇点,然后求出当前最小割,之后两个集合连边为最小割权值:然后两个集合递归下去处理. 显然最后集合中只会存在一个元素,那么最后形成的就是一颗树. 最小割树有一个性质:对于树上\(u,v\)两点,其路径上的边权最小值即为两点的最小割…
2042. 「CQOI2016」不同的最小割 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点 s,ts, ts,t 不在同一个部分中,则称这个划分是关于 s,ts, ts,t 的割.对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而 s,ts, ts,t…
最小割树(Gomory-Hu Tree) 前置知识 Gomory-Hu Tree是用来解决无向图最小割的问题的,所以我们需要了解无向图最小割的定义 和有向图类似,无向图上两点(x,y)的割定义为一个边集E,满足去掉该边集后x,y不联通.最小割即为所有的割中权值之和最小的割 通过这条割我们把点集划为两个部分,x所在的一个记为\(V_x\),y所在的一个记为\(V_y\) 定义 首先我们知道,一个n个点的无向图上,两点之间本质不同的最小割只有n-1种,因此一定存在一棵树,满足树上两点的最小割等于原图…
最小割树(\(\mathcal{Gomory-Hu Tree}\))简明指南 对于单源最短路径,我们有\(SPFA\)和\(Dijkstra\),对于多源最短路径,我们有\(Floyd\):对于两点间的最小割,我们有\(Dinic\)和\(ISAP\),那么对于多组最小割的询问呢? 这是板子题: P4897 [模板]最小割树(Gomory-Hu Tree) 这是教程: 首先有一个定理,就是一个\(n\)个点的图上,两点之间只有\(n\)种本质不同的最小割.因此一定存在一棵树,满足树上两点的最小割…
当我们遇到这样的问题: 给定一个 \(n\) 个点 \(m\) 条边的无向连通图,多次询问两点之间的最小割 我们通常要用到最小割树. 博客 建树 分治.记录当前点集,然后随便找俩点当 \(s\) 和 \(t\),跑一遍最小割,然后在"最小割树"上把 \(s\) 和 \(t\) 连边,并且根据"属于s的点"还是"属于t的点"将当前点集分为两部分,直到当前点集大小为1为止. 性质 最小割树上的边 \((u, v)\),其权值为原图中 \(u\) 到…
给定一个\(n\)个点\(m\)条边的无向连通图,多次询问两点之间的最小割 两点间的最小割是这样定义的:原图的每条边有一个割断它的代价,你需要用最小的代价使得这两个点不连通 Input 第一行两个数\(n,m\) 接下来\(m\)行,每行3个数\(u,v,w\),表示有一条连接\(u\)与\(v\)的无向边,割断它的代价为\(w\) 接下来这一行有一个整数\(Q\),表示询问次数 接下来\(Q\)行,每行两个数\(u,v\),你需要求出\(u\)与\(v\)之间的最小割 Output 输出共\(…
传送门 Description 给定一个\(n\)个点\(m\)条边的无向连通图,多次询问两点之间的最小割 两点间的最小割是这样定义的:原图的每条边有一个割断它的代价,你需要用最小的代价使得这两个点不连通 Solution 对于一张无向图,如果 \(s \rightarrow t\) 的最大流是 \(f\),\(s\), \(t\) 所在的割集为 \(S\), \(T\),那么 \(\forall_{x \in S, y \in T}\), \(\operatorname{maxflow}(x…
kd树模板+全图最小生成树 标签(空格分隔): kd树+最小生成树 题目链接 题意: k维太空中有n个点,每个点可以与距离它m近的点连边,现在给你一堆点,并给出坐标,现在要建立通信网络,一些可以互相到达的点构成一个group,现在要求每个组中的最长的边的权值最小,输出组数,和最长边的最小权值数. 题解:求一个k维空间的距离某个点的前m近点很明显可以使用kd树.权值最小,很明显用最小生成树来优化全局图,最后根据其公共父节点来算一共几个组即可. kd树讲解及模板: kd树通过划分平面来建树,对于每个…
2018年论文题 约定:令点集$V=[1,n]$.边集$E=[1,m]$,记$m$条边依次为$e_{i}=(x_{i},y_{i},c_{i})$(其中$1\le i\le m$),将其按照$c_{i}$从小到大排序,即不妨假设有$c_{1}\le c_{2}\le...\le c_{m}$ 先来考虑$T=1$的情况,即如何求最小方差生成树 题意即求$\min_{E_{T}\subseteq E,E_{T}为生成树}\frac{\sum_{x\in E_{T}}(\mu-c_{x})^{2}}{…
For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write…
2229: [Zjoi2011]最小割 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1565  Solved: 560[Submit][Status][Discuss] Description 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割. 对于带权图来说,将所有顶点处在不同部分的边的…
[题意] 有n个绿洲, m条道路,每条路上有一个温度,和一个路程长度,从绿洲s到绿洲t,求一条道路的最高温度尽量小, 如果有多条, 选一条总路程最短的. InputInput consists of several test cases. Your program must process all of them.The first line contains two integers N and E (1 ≤ N ≤ 100; 1 ≤ E ≤ 10000) where N represents…
For an undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, writ…
 算法提高 最小方差生成树   时间限制:1.0s   内存限制:256.0MB        问题描述 给定带权无向图,求出一颗方差最小的生成树. 输入格式 输入多组测试数据.第一行为N,M,依次是点数和边数.接下来M行,每行三个整数U,V,W,代表连接U,V的边,和权值W.保证图连通.n=m=0标志着测试文件的结束. 输出格式 对于每组数据,输出最小方差,四舍五入到0.01.输出格式按照样例. 样例输入 4 51 2 12 3 23 4 24 1 12 4 34 61 2 12 3 23 4…
题目大意:给定一张 N 个顶点的完全图,边有边权,求该完全图的一棵最小瓶颈树. 最小瓶颈树:一棵最大边权值在同一张图的所有生成树中最小,即:最大边权值最小的生成树,其值为该树的最大边权的权值. 引理1:最小生成树一定是一棵最小瓶颈树. 证明:若最小生成树不是最小瓶颈树,则意味着存在一条边的权值大于最小瓶颈树的最大边权值,那么将 MST 的该边去掉,则将一棵树变成了不连通的两棵树,再将最小瓶颈树的一条连接这两个联通块的边加入 MST,可以得到一棵权值更小的生成树,与 MST 性质矛盾,证毕. 引理…
目录 1 问题描述 2 解决方案   1 问题描述 问题描述 给定带权无向图,求出一颗方差最小的生成树. 输入格式 输入多组测试数据.第一行为N,M,依次是点数和边数.接下来M行,每行三个整数U,V,W,代表连接U,V的边,和权值W.保证图连通.n=m=0标志着测试文件的结束. 输出格式 对于每组数据,输出最小方差,四舍五入到0.01.输出格式按照样例. 样例输入 4 51 2 12 3 23 4 24 1 12 4 34 61 2 12 3 23 4 34 1 12 4 31 3 30 0 样…
题目描述 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列必须恰好放置一个纵向守卫.每个位置放置守卫的代价是不一样的,且每个位置最多只能放置一个守卫,一个守卫不能同时兼顾行列的防御.请计算控制整个棋盘的最小代价. 输入 第一行包含两个正整数n,m(2<=n,m<=100000,n*m<=100000),分别表示棋盘的行数与列数. 接下来n行,每行m个正整数 其中第i行第j列的数w[i][j](1<=w[i][j]<=10…
题面 传送门 思路 首先我们明确一点:这道题不是让你把$n^2$个最小割跑一遍[废话] 但是最小割过程是必要的,因为最小割并没有别的效率更高的算法(Stoer-Wagner之类的?) 那我们就要尽量找办法减少做最大流(求最小割)的次数 最小割树 就像最小生成树一样,最小割也有自己的生成树 我们新建立一个有n个点,没有边的无向图 我们在原无向图中任选两个点S,T,求出S-T最小割,那么可以在S-T中间加一条权值等于最小割值得无向边 然后,分别对S属于的点集合和T属于的点集合递归做上面的过程,直到当…
题面 传送门 思路 首先我们明确一点:这道题不是让你把$n^2$个最小割跑一遍[废话] 但是最小割过程是必要的,因为最小割并没有别的效率更高的算法(Stoer-Wagner之类的?) 那我们就要尽量找办法减少做最大流(求最小割)的次数 最小割树 就像最小生成树一样,最小割也有自己的生成树 我们新建立一个有n个点,没有边的无向图 我们在原无向图中任选两个点S,T,求出S-T最小割,那么可以在S-T中间加一条权值等于最小割值得无向边 然后,分别对S属于的点集合和T属于的点集合递归做上面的过程,直到当…
WPL 和哈夫曼树 哈夫曼树,又称最优二叉树,是一棵带权值路径长度(WPL,Weighted Path Length of Tree)最短的树,权值较大的节点离根更近. 首先介绍一下什么是 WPL,其定义是树的所有叶结点的带权路径长度之和,称为树的带权路径长度,公式为 WPL = W1 * L1 + W2 * L2 + W3 * L3 + ... + Wn * Ln. 下面是个最简单且最直观的案例,通过实际案例能够更清晰的表示 WPL 和哈夫曼树. 百分制的成绩转换成五分制的成绩,伪代码如下:…