[Luogu2365]任务安排(斜率优化)】的更多相关文章

2726: [SDOI2012]任务安排 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 868  Solved: 236[Submit][Status][Discuss] Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始前,机器需要启…
[BZOJ2726][SDOI2012]任务安排 Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和.注意,同一批任务将在同一时刻完成.每个任务的费用是它的完成时刻乘以一个费用系数Fi.请确定一个分组方案,使得总费…
题解 本题的状态很容易设计: f[i] 为到第i个物件的最小代价. 但是方程不容易设计,因为有"后效性" 有两种方法解决: 1)倒过来设计动态规划,典型的,可以设计这样的方程: dp(i) = min( dp(j) + F(i) * (T(i) - T(j) + S) ) (i < j <= N) F, T均为后缀和. http://www.cnblogs.com/JSZX11556/p/5184251.html 2)提前计算代价,典型的,可以设计这样的方程: 「设f[i]…
这个题目中 斜率优化DP相当于存在一个 y = kx + z 然后给定 n 个对点 (x,y)  然后给你一个k, 要求你维护出这个z最小是多少. 那么对于给定的点来说 我们可以维护出一个下凸壳,因为如果存在一个上突壳的话,那么上突壳的点是一定不会被选上的. 所以对于解来说,只有下凸壳的点再会被选到. 所以我们就可以用单调队列维护处这个下凸壳. 假如我们保证给定的k是单调递增的, 那么我们就可以把前面一段不需要的东西给删掉. 假如k不是单调的,则我们就可以用二分找到第一个 >  询问k的答案.…
虽然以前学过斜率优化dp但是忘得和没学过一样了.就当是重新学了. 题意很简单(反人类),利用费用提前的思想,考虑这一次决策对当前以及对未来的贡献,设 \(f_i\) 为做完前 \(i\) 个任务的贡献,\(t_i\) 为时间前缀和, \(c_i\) 为费用前缀和,容易得到 \[f_i = Min_{0 \leq j < i} (f_j + t_i (c_i - c_j) + s (c_n - c_j)\] 直接暴力转移,时间复杂度 \(O(n^2)\) 考虑斜率优化,将转移关系变形为 \[f_j…
题解 转移方程与我的上一篇题解一样 : $S\times sumC_j  + F_j = sumT_i \times sumC_j + F_i - S \times sumC_N$. 分离成:$S\times sumC_j  + F_j = sumT_i \times sumC_j + F_i - S \times sumC_N$ 不同的是, 时间可能为 负数(出题人解释:不要把时间看的这么狭义. 所以$sumT_i$不是递增. 所以我们不能在队首弹出斜率比 $sumT_i$小的数, 只能用一个…
Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) #define maxn 1000000 #define ll long long #define ldb long double using namespace std; int n,s,head,tail; int q[maxn]; ll f[maxn],sumt[maxn],sumf[maxn]; ldb…
Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) #define ll long long #define x(i) (sumf[i]) #define y(i) (f[i]) #define maxn 1000000 using namespace std; int n,s,head,tail; int q[maxn]; ll sumt[maxn],sumf…
摆渡车的题解我已经写过一遍了,在这里,这次主要从斜率优化的角度讲一下摆渡车,并总结一下斜率优化会出现的一些奇奇怪怪的错误. 摆渡车 Description 有 n 名同学要乘坐摆渡车从人大附中前往人民大学,第 i 位同学在第 titi分钟去 等车.只有一辆摆渡车在工作,但摆渡车容量可以视为无限大.摆渡车从人大附中出发. 把车上的同学送到人民大学.再回到人大附中(去接其他同学),这样往返一趟总共花费m分钟(同学上下车时间忽略不计).摆渡车要将所有同学都送到人民大学. 凯凯很好奇,如果他能任意安排摆…
[Luogu2365]任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成).每个任务的费用是它的完成时刻乘以一个费用系数Fi.请确定一个分组方案,使得总费用最小. 例如:S=1:T={1,3,4,2,1}:F={3,2,3,3,4}.如果分…
P2365 任务安排 batch:$n<=10000$ 斜率优化入门题 $n^{3}$的dp轻松写出 但是枚举这个分成多少段很不方便 我们利用费用提前的思想,提前把这个烦人的$S$在后面的贡献先算掉 设$sv[i],st[i]$为费用.时间的前缀和 于是我们就可以得出一个$n^{2}$的方程 $f[i]=f[j]+(sv[i]-sv[j])*st[i]+(sv[n]-sv[j])*S$ 拆开:$f[i]=f[j]+sv[i]*st[i]-sv[j]*st[i]+sv[n]*S-sv[j]*S$…
描述 这道题目说的是,给出了n项必须按照顺序完成的任务,每项任务有它需要占用机器的时间和价值.现在我们有一台机器可以使用,它每次可以完成一批任务,完成这批任务所需的时间为一个启动机器的时间S加上所有任务需要的时间.并且它是在完成所有任务后才会把任务的成果输出,这样我们就在那一时间时得到所有这些任务的一个完成时间.我们现在要求一种完成任务的方式使得所有任务的完成时间乘上该任务的价值之和最小. 输入 第一行,一个数n表示任务的总数 第二行,一个数s表示开机的时间 接下来n行,每行两个数a,b,a表示…
BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分 Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和.注意,同一批任务将在同一时刻完成.每个任务的费用是它的完成时刻乘以一个费用系数Fi.请确定一个分…
任务安排1(小数据):https://www.luogu.com.cn/problem/P2365 任务安排2(大数据):https://www.luogu.com.cn/problem/P5785 题目描述 有 \(N\) 个任务排成一个序列在一台机器上等待执行,它们的顺序不得改变.机器会把这 \(N\) 个任务分成若干批,每一批包含连续的若干个任务.从时刻 \(0\) 开始,任务被分批加工,执行第 \(i\) 个任务所需的时间是 \(T_i\).另外,在每批任务开始前,机器需要 \(S\)…
网上的题解...状态就没有一个和我一样的...这让我有些无从下手... 分析: 我们考虑,正常的斜率优化满足x(i)单调递增,k(i)单调递增,那么我们就可以只用维护一个单调队列满足对于当前的x(i)有最小值即可,因为x(i)满足单调递增.这样的话,我们就可以维护一个单调队列让队首元首最小.而这道题,可以发现有部分数据满足x(i)单调递增,那么直接裸上就可以,但是由于时间有负数,所以x(i)并不满足单调性.但是由于k(i)仍然满足单调性,因此,我们依然可以发现更新x(i)的时候满足斜率优化的性质…
题目 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和.注意,同一批任务将在同一时刻完成.每个任务的费用是它的完成时刻乘以一个费用系数Fi.请确定一个分组方案,使得总费用最小. 输入格式 第一行两个整数,N,S. 接下来N行每行两个整数…
解法一:http://www.cnblogs.com/SilverNebula/p/5926253.html 解法二:斜率优化 在解法一中有这样的方程:dp[i]=min(dp[i],dp[j]+(sumf[i]-sumf[j])*sumt[i]+s*(sumf[n]-sumf[j]) ) 其中min的后半部分,也就是dp[j]+(sumf[i]-sumf[j])*sumt[i]+s*(sumf[n]-sumf[j]) 计算了将j~i分为一组的花费(以及提前计算的受影响花费) 设f(j)=dp[…
由题目条件显然可以得到状态 f[i][j] 表示以 i 为结尾且 i 后作为断点,共做了 j 次分组的最小代价. 因此转移变得很显然:f[i][j]=min{f[k][j-1]+(s×j+sumT[i])×(sumC[i]-sumC[k])}  (0≤k<i) sumT[i]表示时间的前缀和,sumC[i]表示代价的前缀和 但是绝望的是显然时间复杂度是O(n³),2D/1D的动态规划显然无法解决一题(但是如果能使用斜率优化也可以优化为O(n²)的程度,但显然毫无卵用QAQ) 所以我们来优化状态,…
3月14日第三题!!!(虽然是15号发的qwq) Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3-N.这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和.注意,同一批任务将在同一时刻完成.每个任务的费用是它的完成时刻乘以一个费用系数Fi.请确定一个分组方案,使得总费用最…
传送门 思路: 最朴素的dp式子很好考虑:设\(dp(i,j)\)表示前\(i\)个任务,共\(j\)批的最小代价. 那么转移方程就有: \[ dp(i,j)=min\{dp(k,j-1)+(sumT_i+S*j)*(sumC_i-sumC_k)\} \] 为什么有个\(S*j\)呢,因为前面的批次启动会对后面的答案有影响. 但是分析复杂度是\(O(n^3)\)的,肯定不行. 考虑一下为什么需要第二个状态呢?是为了消除后效性,因为后面的状态不知道总共启动了几次. 但我们可以把费用提前计算,一次启…
第一次斜率优化. 大致有两种思路: 1.f[i]表示第i个不选的最优情况(最小损失和)f[i]=f[j]+e[i] 显然n^2会T,但是可以发现f的移动情况可以用之前单调队列优化,就优化成O(n)的了. 2.f[i]表示第i个选,第j+1不选的最优情况(最大效率和)f[i]=f[j]+sum[i]-sum[j+1] (i-k-1<=j<=i-1),同样也能单调队列优化成O(n). PS:第一种做法的需要枚举不选最后k个数的情况,但是Min的初值0x7fffffff(max_longint)是会…
题目链接 题意 : 一篇文章有n个单词,如果每行打印k个单词,那这行的花费是,问你怎么安排能够得到最小花费,输出最小花费. 思路 : 一开始想的简单了以为是背包,后来才知道是斜率优化DP,然后看了网上的资料,看得还挺懂的,不过我觉得如果以后真遇到斜率DP,要推起来肯定不简单..... 网上资料1 网上资料2 #include <iostream> #include <stdio.h> using namespace std; ],dp[],sum[] ; int head,tail…
不想写什么详细的讲解了...而且也觉得自己很难写过某大佬(大米饼),于是建议把他的 blog 先看一遍,然后自己加了几道题目以及解析...顺便建议看看算法竞赛(蓝皮书)的 0x5A 斜率优化(P294) 部分 这是——大米饼大佬 看完了大米饼同志对斜率优化的介绍,下面我来稍微讲讲对斜率优化dp 的理解 前置知识 单调队列(栈) 平面直角坐标系 直线解析式 等式处理 dp状态设计 balabala...... 理解 其实斜率优化 dp 的原理很简单: 根据题目(斜率优化 dp 的题目一般都很裸)的…
洛谷题目传送门 安利蒟蒻斜率优化总结 由于人是每次都是连续一段一段地选,所以考虑直接对\(x\)记前缀和,设现在的\(x_i=\)原来的\(\sum\limits_{j=1}^ix_i\). 设\(f_i\)为安排前\(i\)个人的最大值\((f_0=0)\) \(f_i=\max\limits_{j=0}^{i-1}\{f_j+a(x_i-x_j)^2+b(x_i-x_j)+c\}\) \(\quad=\max\limits_{j=0}^{i-1}\{f_j-2ax_ix_j+ax_j^2-b…
对于刷题量我觉得肯定是刷的越多越好(当然这是对时间有很多的人来说. 但是在我看来我的确适合刷题较多的那一类人,应为我对知识的应用能力并不强.这两天学习的内容是dp的斜率优化.当然我是不太会的. 这个博文肯定也是不断更新的(随着我对斜率优化的不断深入的理解. 这两天做的题是一道经典的任务安排. 这道题是我两个星期前都想a掉的题.然后都是一个最简单的状态转移方程都推不出,真的是菜到家了. 然后翻书有一个最简单的状态转移方程,看了几分钟发现看的不是很懂而且我感觉这题应该自己思考. 所以扔下来了.两个星…
Description  今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的父亲用道路连接.为了方便起见,我们将全国的 n 个城市用 1 到 n 的整数编号.其中SZ市的编号为 1.对于除SZ市之外的任意一个城市 v,我们给出了它在这棵树上的父亲城市 fv  以及到父亲城市道路的长度 sv.从城市 v 前往SZ市的方法为:选择城市 v 的一个祖先 a,支付购票的费用,乘坐交…
打印文章 时间限制:9000/3000 MS(Java / Others)内存限制:131072/65536 K(Java / Others) 总共提交:14521已接受提交:4531 问题描述 零有一台旧的打印机,有时不能正常工作.由于它是古董,他仍然喜欢用它来打印文章.但是长时间工作太旧,肯定会磨损,所以用零成本来评价这个程度. 有一天,零想要打印一个有N个单词的文章,而每个单词我有一个打印费用Ci.另外,零知道在一行中打印k个字将花费 M是常数. 现在,零想要知道最低成本,以完美安排文章.…
首先考虑怎么安排攻击顺序.显然如果攻击了某台兵器就应该一直连续攻击直到将其破坏,破坏所需时间可以直接算出来,设其为b.假设确定了某个破坏顺序,如果交换相邻两个兵器,显然不会对其他兵器造成影响,两种顺序的代价则分别为a1(b1-1)+a2(b1+b2-1)和a1(b1+b2-1)+a2(b2-1),那么当a2b1<a1b2时先破坏1较优.于是按b/a从小到大排序. 然后考虑怎么秒杀.如果只能秒杀一个显然直接枚举即可.假设已确定要秒杀的是第i个,则需要找到j>i最小化Σax(Bx-1)-ai(Bi…
前言 斜率优化\(DP\)是难倒我很久的一个算法,我花了很长时间都难以理解.后来,经过无数次的研究加以对一些例题的理解,总算啃下了这根硬骨头. 基本式子 斜率优化\(DP\)的式子略有些复杂,大致可以表示成这样: \[f_i=min_{j=1}^{i-1}(A(j)-B(j)*S(i)+C(i))\] 其中\(A(j)\)和\(B(j)\)是两个只与\(j\)有关的函数,\(S(i)\)和\(C(i)\)是两个只与\(i\)有关的函数,式子中的\(min\)其实也可以替换成\(max\),但这里…
题意: 有 n 名同学要乘坐摆渡车从人大附中前往人民大学,第 i 位同学在第 ti​ 分钟去 等车.只有一辆摆渡车在工作,但摆渡车容量可以视为无限大.摆渡车从人大附中出发. 把车上的同学送到人民大学.再回到人大附中(去接其他同学),这样往返一趟总共花费 m 分钟(同学上下车时间忽略不计).摆渡车要将所有同学都送到人民大学. 凯凯很好奇,如果他能任意安排摆渡车出发的时间,那么这些同学的等车时间之和最小为多少呢? 本人感觉自己语文不是那么的好,无法概括. 细节: 咳咳,此题细节都在题意之中嘻嘻嘻,原…