参考: https://blog.csdn.net/qian99/article/details/78046329…
来源:https://www.jianshu.com/p/c02a1fbffad6 简单易懂的softmax交叉熵损失函数求导 来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福大众,岂不美哉~ softmax经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中关键的步骤就是求导,从这个过程也可以更深刻地理解反向传播的过程,还可以对梯度传播的问题有更多的思考. softmax 函数 softmax(柔性最大值)函数,一般在神经网络中, softmax可以作为分类任…
深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/lilong117194/article/details/81542667 1. softmax层的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层…
神经网络由各个部分组成 1.得分函数:在进行输出时,对于每一个类别都会输入一个得分值,使用这些得分值可以用来构造出每一个类别的概率值,也可以使用softmax构造类别的概率值,从而构造出loss值, 得分函数表示最后一层的输出结果,得分函数的维度对应着样本的个数和标签的类别数 得分结果的实例说明:一个输入样本的特征值Xi 1*4, w表示权重参数3*4,这里使用的是全连接y = w * x.T,输出结果为3*1, 这3个结果分别表示3种标签的得分值 代码说明: out = np.dot(x_ro…
1 softmax函数 softmax函数的定义为 $$softmax(x)=\frac{e^{x_i}}{\sum_j e^{x_j}} \tag{1}$$ softmax函数的特点有 函数值在[0-1]的范围之内 所有$softmax(x_i)$相加的总和为1 面对一个分类问题,能将输出的$y_i$转换成[0-1]的概率,选择最大概率的$y_i$作为分类结果[1]. 这里需要提及一个有些类似的sigmoid函数,其定义为 $$sigmoid(x)=\frac{1}{1+e^{-x_i}} \…
系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 3.2 交叉熵损失函数 交叉熵(Cross Entropy)是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息.在信息论中,交叉熵是表示两个概率分布 \(p,q\) 的差异,其中 \(p\) 表示真实分布,\(q\) 表示非真实分布,那么\(H(p,q)\)就称为交叉熵: \[H(p,q)=\sum_i p_i \cdot \l…
1.说在前面 最近在学习object detection的论文,又遇到交叉熵.高斯混合模型等之类的知识,发现自己没有搞明白这些概念,也从来没有认真总结归纳过,所以觉得自己应该沉下心,对以前的知识做一个回顾与总结,特此先简单倒腾了一下博客,使之美观一些,再进行总结.本篇博客先是对交叉熵损失函数进行一个简单的总结. 2. 交叉熵的来源 2.1.信息量 交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起.我们先来看看什么是信息量: 事件A:巴西队进入了2018世界杯决赛圈. 事…
目录 sigmod交叉熵 Softmax转换 Softmax交叉熵 参考资料 sigmod交叉熵 Sigmod交叉熵实际就是我们所说的对数损失,它是针对二分类任务的损失函数,在神经网络中,一般输出层只有一个结点. 假设y为样本标签,_y为全连接网络的输出层的值,那么,这个对数损失定义为 PS:这个是可以用极大似然估计推导出来的 举例: y=0,_y=0.8,那此时的sigmod交叉熵为1.171 import numpy as np def sigmod(x): return 1/(1+np.e…
1.sigmoid函数 ​ sigmoid函数,也就是s型曲线函数,如下: 函数: 导数: ​ 上面是我们常见的形式,虽然知道这样的形式,也知道计算流程,不够感觉并不太直观,下面来分析一下. 1.1 从指数函数到sigmoid ​ 首先我们来画出指数函数的基本图形: ​ 从上图,我们得到了这样的几个信息,指数函数过(0,1)点,单调递增/递减,定义域为(−∞,+∞),值域为(0,+∞),再来我们看一下sigmoid函数的图像: ​ ​ 如果直接把e−x放到分母上,就与ex图像一样了,所以分母加上…
前言:softmax中的求导包含矩阵与向量的求导关系,记录的目的是为了回顾. 下图为利用softmax对样本进行k分类的问题,其损失函数的表达式为结构风险,第二项是模型结构的正则化项. 首先,每个queue:x(i)的特征维度是 n , 参数 θ 是一个 n×k 的矩阵,输出的结果 y(i) 为一个 k×1 的向量,其中第 j 个元素对应元素的 e 指数为该 queue 属于第 j 类的概率(未归一化).所以虽然损失函数 J(θ) 是一个常数,但是它的自变量为一个矩阵 Θ 和 一个特征向量 x(…