L1与L2损失函数和正则化的区别】的更多相关文章

本文翻译自文章:Differences between L1 and L2 as Loss Function and Regularization,如有翻译不当之处,欢迎拍砖,谢谢~   在机器学习实践中,你也许需要在神秘的L1和L2中做出选择.通常的两个决策为:1) L1范数 vs L2范数 的损失函数: 2) L1正则化 vs L2正则化. 作为损失函数   L1范数损失函数,也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE).总的说来,它是把目标值(\(Y_{i}\))与估计值(\…
L1范数损失函数,也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE) L2范数损失函数,也被称为最小平方误差(LSE) L2损失函数 L1损失函数 不是非常的鲁棒(robust) 鲁棒 稳定解 不稳定解 总是一个解 可能多个解 鲁棒性 最小绝对值偏差之所以是鲁棒的,是因为它能处理数据中的异常值.如果需要考虑任一或全部的异常值,那么最小绝对值偏差是更好的选择. L2范数将误差平方化(如果误差大于1,则误差会放大很多),模型的误差会比L1范数来得大,因此模型会对这个样本更加敏感,这就需要调整…
L0范数是指向量中非0元素的个数 L1范数是向量中各个元素的绝对值求和 L2范数是指向量的各个元素平方求和然后取和的平方根 机器学习的目的是使学习到的模型不仅对已知的数据而且对未知的数据有很好的预测能力,不同的学习方法会给出不同的模型,当损失函数给定的时候,损失函数的模型的训练误差和测试误差就是学习方法优劣的评估标准,机器学习的最终目的是为了让测试误差达到最小,训练误差的大小对判定问题是不是一个容易学习的问题有意义,但本质上是不重要的.在机器学习的过程中,我们希望学习到一个能够很好的解释已知数据…
概述 线性回归拟合一个因变量与一个自变量之间的线性关系y=f(x).       Spark中实现了:       (1)普通最小二乘法       (2)岭回归(L2正规化)       (3)Lasso(L1正规化).       (4)局部加权线性回归       (5)流式数据可以适用于线上的回归模型,每当有新数据达到时,更新模型的参数,MLlib目前使用普通的最小二乘支持流线性回归.除了每批数据到达时,模型更新最新的数据外,实际上与线下的执行是类似的. 本文采用的符号: 拟合函数   …
本文从以下六个方面,详细阐述正则化L1和L2: 一. 正则化概述 二. 稀疏模型与特征选择 三. 正则化直观理解 四. 正则化参数选择 五. L1和L2正则化区别 六. 正则化问题讨论 一. 正则化概述 正则化(Regularization),L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项. 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者…
L0/L1/L2范数的联系与区别 标签(空格分隔): 机器学习 最近快被各大公司的笔试题淹没了,其中有一道题是从贝叶斯先验,优化等各个方面比较L0.L1.L2范数的联系与区别. L0范数 L0范数表示向量中非零元素的个数: \(||x||_{0} = \#(i)\ with\ \ x_{i} \neq 0\) 也就是如果我们使用L0范数,即希望w的大部分元素都是0. (w是稀疏的)所以可以用于ML中做稀疏编码,特征选择.通过最小化L0范数,来寻找最少最优的稀疏特征项.但不幸的是,L0范数的最优化…
一.范数的概念 向量范数是定义了向量的类似于长度的性质,满足正定,齐次,三角不等式的关系就称作范数. 一般分为L0.L1.L2与L_infinity范数. 二.范数正则化背景 1. 监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差.最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防止我们的模型过分拟合我们的训练数据. . 因为参数太多,会导致我们的模型复杂度上升…
https://blog.csdn.net/jinping_shi/article/details/52433975 https://blog.csdn.net/zouxy09/article/details/24971995 一.概括: L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项. 二.区别: 1.L1是模型各个参数的绝对值之和. L2是模型各个参数的平方和的开方值. 2.L1会趋向于产生少量的特征,而其他的特征都是0. 因为最优的参数值很大…
作为损失函数 L1范数损失函数 L1范数损失函数,也被称之为最小绝对值误差.总的来说,它把目标值$Y_i$与估计值$f(x_i)$的绝对差值的总和最小化. $$S=\sum_{i=1}^n|Y_i-f(x_i)|$$ L2范数损失函数 L2范数损失函数,也被称为最小平方误差,总的来说,它把目标值$Y_i$与估计值$f(x_i)$的差值的平方和最小化. $$S=\sum_{i=1}^n(Y_i-f(x_i))^2$$ L1损失函数 L2损失函数 鲁棒 不是很鲁棒 不稳定性 稳定解 可能多个解 总是…
神经网络中损失函数后一般会加一个额外的正则项L1或L2,也成为L1范数和L2范数.正则项可以看做是损失函数的惩罚项,用来对损失函数中的系数做一些限制. 正则化描述: L1正则化是指权值向量w中各个元素的绝对值之和; L2正则化是指权值向量w中各个元素的平方和然后再求平方根; 一般都会在正则化项之前添加一个系数,这个系数需要用户设定,系数越大,正则化作用越明显. 正则化作用: L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择,一定程度上,L1也可以防止过拟合;L2正则化可以防止…