对于一个无向图,如果任意两点至少存在两条点不重复(除起点和终点外无公共点)的路径,则这个图就是点双联通. 这个要求等价于任意两条边都存在于一个简单环(即同一个点不能在圈中出现两次)中,即内部无割点. 那么算法首先要求出割点. 从代码中可以看出:只要求出割点,就开始组一个bcc中. 如果割点两侧都不存在环的话会怎么处理呢? 代码中相邻的割点(或者是割点和根节点)也被当做一个bcc处理. bccno[i]为点i所在的bcc序号,那么割点的bccno为多少呢? 割点的bccno没有意义,割点存在于多个…
#include <bits/stdc++.h> using namespace std; const int MAXN = 100005; const int MAXM = 500005; int n, m; int fir[MAXN], nxt[MAXM<<1], to[MAXM<<1], cnt = 1; int low[MAXN], dfn[MAXN], stk[MAXN], scc[MAXN], scccnt, indx, tmr; inline void A…
Tarjan求点双连通分量 - 李昊哲…
题目链接 考虑建立原图的补图,即如果两个骑士不互相憎恨,就在他们之间连一条无向边. 显而易见的是,如果若干个骑士在同一个点数为奇数的环上时,他们就可以在一起开会.换句话说,如果一个骑士被一个奇环包含,那么他就一定可以去开会. 想到环,我们就可以考虑无向图的双联通分量. 当我们用Tarjan算法求出无向图上的双联通分量后再来考虑这一道题时,我们就可以得出两个结论: 1.如果两个骑士分别在两个不同的双联通分量里,那么他们就不可能在一起开会. 这一个结论是很明显的.因为将每个双联通分量缩点后,新图一定…
无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被称为"点双连通分量",记为"\(v-DCC\)".无向图图的极大边双连通子图被称为"边双连通分量",记为"\(e-DCC\)". 没错,万能的图论连通性算法\(Tarjan\)又来了. 预备知识 时间戳 图在深度优先遍历的过程中,…
根据 李煜东大牛:图连通性若干拓展问题探讨 ppt学习. 有割点不一定有割边,有割边不一定有割点. 理解low[u]的定义很重要. 1.无向图求割点.点双联通分量: 如果对一条边(x,y),如果low[y]>=dfn[x],表示搜索树中y为根的子树必须要通过x才能到达树的上端,则x必为割点. x属于多个点双联通分量,所以出栈的时候保留x(所以栈出到y就好!否则可能会把其他支路的节点一起出栈). 附上一个小例子. 这个打个模板吧. #include<cstdio> #include<…
题意: 给你一个无向图,要求把所有无向边改成有向边,并且添加最少的有向边,使得新的有向图强联通. 分析: 这题的解法还是很好想的.先用边双联通分量缩点,然后找新图中入度为0和为1的点,入度为0则ans+2,为1则ans+1,最后输出(ans+1)/2. 注意,如果原图本来就强联通,答案为0不是1. 在这里主要说说打边双联通的注意事项.(一开始觉得是跟点双连通差不多的,调试的时候才发现很容易疏忽导致BUG很多啊) 1.如果有重边,则那条就不是割边了,我们很容易向上重走树枝边的反向边导致程序认为这是…
题意:一个联通的无向图, 对于每一条边, 若删除该边后存在两点不可达,则输出这两个点, 如果存在多个则输出第一个点尽可能大,第二个点尽可能小的. 不存在输出0 0 首先 若删除某一条边后存在多个联通分量则该边一定是桥, 那么我们可以先处理出所有的桥,然后把所有双联通分量缩点,缩点之后就变成了一棵树. 而树上的每一条边都是一个桥, 考虑每条边的输出,删除某一边后肯定会出现两个联通分量, 需要记录两个联通分量中最大的点max1 max2, 如果max1!=n 则答案就是max1 max1+1否则ma…
Tarjan求强连通分量 先来一波定义 强连通:有向图中A点可以到达B点,B点可以到达A点,则称为强连通 强连通分量:有向图的一个子图中,任意两个点可以相互到达,则称当前子图为图的强连通分量 强连通图: 如果在一个有向图中,每两个点都强连通,我们就叫这个图叫强连通图. (一张十分简洁的图) 如图,图中{1,2}就是一个强连通,也是这个图中的一个强连通分量 求强连通分量的算法有三种: Kosaraju算法,Tarjan算法,Gabow算法(然而我只会用Tarjan求) 这里就稍微介绍一下tarja…
Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1)         有向图的强联通分量 (2)         无向图的双联通分量(求割点,桥) (3)         最近公共祖先 今天主要给未来的自己讲解一下前两个应用,让未来的自己不会向现在的自己一样又忘了Tarjan怎么写.熟悉DFS的话,理解起来会简单很多. (1)         有向图的强联通分量 首先解释Tarjan中几个比较重要的值 DFN[i] : 节点i被访问到的次序 L…