C#矩阵求逆】的更多相关文章

在做课题时,遇到了求多项式问题,利用了求逆方法.矩阵求逆一般使用简单的算法,还有快速算法 如全选主元高斯-约旦消元法,但本文程序主要写了简单的矩阵求逆算法定义法之伴随矩阵求逆公式如下,其中A可逆: ,其中是的伴随矩阵.. 1.给定一个方阵,非奇异(不是也可,程序有考虑): 2.由矩阵得到其行列式,求其值如|A|: 3.求其伴随矩阵: 4.得到其逆矩阵. 主要函数如下: //得到给定矩阵src的逆矩阵保存到des中. bool GetMatrixInverse(double src[N][N],i…
// // main.cpp // 矩阵求逆 // // Created by 唐 锐 on 13-6-20. // Copyright (c) 2013年 唐 锐. All rights reserved. // #include<iostream> #include<algorithm> #include<iomanip> #include<string> #include<sstream> #include<cmath> #in…
矩阵求逆运算有多种算法: 伴随矩阵的思想,分别算出其伴随矩阵和行列式,再算出逆矩阵: LU分解法(若选主元即为LUP分解法: Ax = b ==> PAx = Pb ==>LUx = Pb ==> Ly = Pb ==> Ux = y ,每步重新选主元),它有两种不同的实现: A-1=(LU)-1=U-1L-1,将A分解为LU后,对L和U分别求逆,再相乘: 通过解线程方程组Ax=b的方式求逆矩阵.b分别取单位阵的各个列向量,所得到的解向量x就是逆矩阵的各个列向量,拼成逆矩阵即可.…
在RLS自适应滤波器的实现过程中,难免不涉及矩阵的求逆运算.而求逆操作双是非常耗时的,一个很自然的想法就是尽可能的避免直接对矩阵进行求逆运算.那么,在RLS自适应滤波器的实现中,有没有一种方法能避免直接求逆运算呢?答案当然是用的:使用矩阵求逆引理来避免对矩阵进行直接求逆. 这里先对矩阵求逆引理做下介绍,也叫做Woodbury矩阵恒等式(或者称做Sherman–Morrison formula,这里统一称矩阵求逆引理)在线性代数中: \[{\left( {A + UCV} \right)^{ -…
哦?今天在\(luogu\)上fa♂现了矩阵求逆的板子--于是就切了切. 那么我们考虑一个矩阵\(A\),它的逆矩阵记作\(A^{-1}\),其中对于矩阵这个群来讲,会有\(A \cdot A^{-1} = I\) 其中\(I\)表示单位矩阵,主对角线均为\(1\) . 那么我们对于矩阵\(A:\) \(\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3}\\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} &…
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4128 大水题一道 使用大步小步算法,把数字的运算换成矩阵的运算就好了 矩阵求逆?这么基础的线代算法我也不想多说,还是自行百度吧 需要注意的是矩阵没有交换律,所以在计算$B\cdot A^{-m}$的时候不要把顺序搞混 代码: #include <cstring> #include <cstdio> #include <algorithm> #include <…
题意:链接 方法: BSGS+矩阵求逆 解析: 这题就是把Ax=B(mod C)的A和B换成了矩阵. 然而别的地方并没有修改. 所以就涉及到矩阵的逆元这个问题. 矩阵的逆元怎么求呢? 先在原矩阵后接一个单位矩阵,最好还是设右对角线 先把原矩阵进行高斯消元 且消成严格右对角线的单位矩阵的形式. 然后在消元的同一时候把单位矩阵的部分一并计算.最后单位矩阵就变成了它的逆矩阵. 这道题保证矩阵有逆 然而没有逆矩阵的情况就是高斯消元搞不成. 所以推断应该也好推断. 另外,刚刚实測本题数据.关于将矩阵的ha…
题目大意:给你$N$个长度相等且互不相同的模式串,现在有一个字符串生成器会不断生成字符,其中每个字符出现的概率是$p_{i}/q_{i}$,当生成器生成的字符串包含了某个模式串,则拥有该模式串的玩家胜利,然后游戏立即结束,求每个玩家获胜的概率 $N<=10$ 首先建出$Trie$图 接着设$f[i]$表示匹配时停在i的概率,可得$f[ch{k}]+=f[i]*p_{k}/q_{k}$ 由于$N$很小,可以构建$dp$转移的邻接矩阵,由于生成器生成的串是无限长的,相当于把矩阵乘了无限次幂 可以耍赖…
P4783 [模板]矩阵求逆 题目描述 求一个$N\times N$的矩阵的逆矩阵.答案对$10^9+7$取模. 输入输出格式 输入格式: 第一行有一个整数$N$,代表矩阵的大小: 从第$2$行到第$N+1$行,每行$N$个整数,其中第$i+1$行第$j$列的数代表矩阵中的元素$a_{ij}$. 输出格式: 若矩阵可逆,则输出$N$行,每行$N$个整数,其中第$i$行第$j$列的数代表逆矩阵中的元素 $b_{ij}$,答案对$10^9+7$取模: 否则只输出一行 No Solution. 输入输…
传送门 解题思路 用高斯消元对矩阵求逆,设\(A*B=C\),\(C\)为单位矩阵,则\(B\)为\(A\)的逆矩阵.做法是把\(B\)先设成单位矩阵,然后对\(A\)做高斯消元的过程,对\(B\)进行同样的操作,最后把\(A\)消成单位矩阵时,\(B\)就是其的逆矩阵. 代码 #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<algorit…