MapReduce-提交job源码分析】的更多相关文章

MapReduce之提交job源码分析 job 提交流程源码详解 //runner 类中提交job waitForCompletion() submit(); // 1 建立连接 connect(); // 1)创建提交 job 的代理 new Cluster(getConfiguration()); // (1)判断是本地 yarn 还是远程 initialize(jobTrackAddr, conf); // 2 提交 job submitter.submitJobInternal(Job.…
总体来说大概有以下2个大的步骤 1.连接集群(yarnrunner或者是localjobrunner) 2.submitter.submitJobInternal()在该方法中会创建提交路径,计算切片(writesplits),生成job.xml在路径下,提交job等 下面用windows下执行mr程序的过程进行源码分析,先把你的hadoop所在的盘符下的tmp文件清空.我的是d:/tmp 1.debug执行driver,进入waitForCompletion,然后进入conect(),可以看到…
这是我的分析,当然查阅书籍和网络.如有什么不对的,请各位批评指正.以下的类有的并不完全,只列出重要的方法. 如要转载,请注上作者以及出处. 一.源码阅读环境 需要安装jdk1.7.0版本及其以上版本,还需要安装Eclipse阅读hadoop源码. Eclipse安装教程参见我的博客. Hadoop源码官网下载.我下载的是2.7.3版本的.其中source是源代码工程,需要你编译才能执行.而binary是编译好的克执行文件. 如果你要搭建Hadoop集群,则下载binary的.如果阅读源代码,下载…
Dream car 镇楼 ~ ! 接上一节Input环节,接下来分析 output环节.代码在runNewMapper()方法中: private <INKEY,INVALUE,OUTKEY,OUTVALUE> void runNewMapper(final JobConf job,final TaskSplitIndex splitIndex, final TaskUmbilicalProtocol umbilical,TaskReporter reporter) { ....... //…
不得不说阅读源码的过程,极其痛苦 .Dream Car 镇楼 ~ ! 虽说整个MapReduce过程也就只有Map阶段和Reduce阶段,但是仔细想想,在Map阶段要做哪些事情?这一阶段具体应该包含数据输入(input),数据计算(map),数据输出(output),这三个步骤的划分是非常符合思维习惯的. 从大数据开发的hello world案例入手,如下是一个word count 案例的map程序 public class WcMapper extends Mapper<LongWritabl…
计算向数据移动 MR程序并不会在客户端执行任何的计算操作,它是为计算工作做好准备,例如计算出切片信息,直接影响到Map任务的并行度. 在Driver中提交任务时,会写到这样的语句: boolean result = job.waitForCompletion(true); 进入到waitForCompletion中: public boolean waitForCompletion(boolean verbose) throws IOException, InterruptedException…
这篇文章主要介绍从命令行到任务在Driver端运行的过程 通过flink run 命令提交jar包运行程序 以yarn 模式提交任务命令类似于: flink run -m yarn-cluster XXX.jar 先来看一下脚本中的调用类 在flink.sh脚本中可以看到提交的命令走到了这样一个外观类上,用于提交job解析用户命令行参数 在其main方法中 先会解析对应需要的flink参数包括flink-conf-dir等,接着 1处会根据是否有hadoop权限安全控制走对应的doas(),具体…
一.简介 SolrCloud是Solr4.0版本以后基于Solr和Zookeeper的分布式搜索方案.SolrCloud是Solr的基于Zookeeper一种部署方式.Solr可以以多种方式部署,例如单机方式,多机Master-Slaver方式. 二.特色功能 SolrCloud有几个特色功能: 集中式的配置信息使用ZK进行集中配置.启动时可以指定把Solr的相关配置文件上传Zookeeper,多机器共用.这些ZK中的配置不会再拿到本地缓存,Solr直接读取ZK中的配置信息.配置文件的变动,所有…
MapReduce作业提交时连接集群是通过Job的connect()方法实现的,它实际上是构造集群Cluster实例cluster,代码如下: private synchronized void connect() throws IOException, InterruptedException, ClassNotFoundException { // 如果cluster为null,构造Cluster实例cluster, // Cluster为连接MapReduce集群的一种工具,提供了一种获取…
1.概述 前面我们已经对Hadoop有了一个初步认识,接下来我们开始学习Hadoop的一些核心的功能,其中包含mapreduce,fs,hdfs,ipc,io,yarn,今天为大家分享的是mapreduce部分,其内容目录如下所示: MapReduce V1 MapReduce V2 MR V1和MR V2的区别 MR V2的重构思路 本篇文章的源码是基于hadoop-2.6.0-src.tar.gz来完成的.代码下载地址,请参考<Hadoop2源码分析-准备篇>. 2.MapReduce V…