今天我们来学习一下python的数据可视化库,Matplotlib,是一个Python的2D绘图库 通过这个库,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率图,条形图,错误图,散点图等等 废话不多说,我们直接通过例子来进行讲解. 首先我们有一组数据如下: 我们可以看到,这组数据有日期,还有日期对应的值,因为这组数据中的日期格式不是标准的日期格式 那么我们对数据做一下转换,取1948年的整年的数据,来进行一个绘图操作 import pandas as pd unrate = pd.rea…
在做完数据分析后,有时候需要将分析结果一目了然地展示出来,此时便离不开Python可视化工具,Matplotlib是Python中的一个2D绘图工具,是另外一个绘图工具seaborn的基础包 先总结下绘制子图的步骤: 1.确定绘制的图形形状(如折线图/条状图/柱状图/饼图/散点图等) 2.填充x/y轴的数据 3.图形细节调整(这里可以做很多调整,如x/y轴文字参数说明,颜色/线粗/柱状粗度,x/y轴文字角度等) 4.显示图像(调用show()) 总结下一个区域同时绘制多个子图的步骤 1.确定绘图…
一.导入数据 import pandas as pd unrate = pd.read_csv('unrate.csv') unrate['DATE'] = pd.to_datetime(unrate['DATE']) print(unrate.head(12)) 结果如下: DATE VALUE 0 1948-01-01 3.4 1 1948-02-01 3.8 2 1948-03-01 4.0 3 1948-04-01 3.9 4 1948-05-01 3.5 5 1948-06-01 3.…
一.读取文件 1)读取文件内容 import pandas info = pandas.read_csv('1.csv',encoding='gbk') # 获取文件信息 print(info) print(type(info)) # 查看文件类型 print(info.dtypes) # 查看每列文件的类型 print(help(pandas.read_csv)) 2)获取文件的信息 import pandas info = pandas.read_csv('1.csv',encoding='…
Matplotlib大家都很熟悉    不谈. ------------------------------------------------------------------------------------------------------------- Echarts是百度出的很有名  也很叼. 以前操练过很多次.. Echarts 是百度开源的一个数据可视化 JS 库.主要用于数据可视化. 散点  折线  饼图 等等 目前支持python的库pyecharts ---------…
1. 画三维图片图 axes = Axes3D(fig)这一步将二维坐标转换为三维坐标,axes.plot_surface() import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() # 将二维转换为三维的情况 axes = Axes3D(fig) x = np.arange(-4, 4, 0.25) y = np.arange(-4…
我们接着上次的继续讲解,先讲一个概念,叫子图的概念. 我们先看一下这段代码 import matplotlib.pyplot as plt fig = plt.figure() ax1 = fig.add_subplot(3,2,1) ax2 = fig.add_subplot(3,2,2) ax3 = fig.add_subplot(3,2,3) ax4 = fig.add_subplot(3,2,6) plt.show() 我们看到plt.figure()这个方法,我们设置一个整体的图.然后…
1.上一章绘制一幅最简单的图像,这一章介绍figure的详细用法,figure用于生成图像窗口的方法,并可以设置一些参数 2.先看此次生成的图像: 3.代码(代码中有详细的注释) # -*- encoding:utf-8 -*- # Copyright (c) 2015 Shiye Inc. # All rights reserved. # # Author: ldq <liangduanqi@shiyejinrong.com> # Date: 2019/2/13 9:47 import ma…
1.下载方式:直接下载Andaconda,简单快捷,减少准备环境的时间 2.图像 3.代码:可直接运行(有详细注释) # -*- encoding:utf-8 -*- # Copyright (c) 2015 Shiye Inc. # All rights reserved. # # Author: ldq <liangduanqi@shiyejinrong.com> # Date: 2019/2/13 9:27 import matplotlib.pyplot as plt import n…
1. 画基本的散点图 plt.scatterdata[:, 0], data[:, 1], marker='o', color='r', label='class1', alpha=0.4) np.random.multivariate_normal 根据均值和协方差生成多行列表 mu_vec1 = np.array([0, 0]) # 表示协方差 cov_mat1 = np.array([[2, 0], [0, 2]]) # 生成一个100行2列的正态分布 x1_samples = np.ra…